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1 Getting Started

Product Overview

In this section...

“Major Features” on page 1-2

“Interactive and Programmatic Environments” on page 1-2

Major Features
Curve Fitting Toolbox™ software is a collection of graphical user interfaces
(GUIs) and M-file functions that operate in the MATLAB® technical
computing environment. The toolbox supplements MATLAB features with:

• Data preprocessing capabilities, such as sectioning, excluding data, and
smoothing

• Data fitting using parametric and nonparametric models:

- The toolbox includes a library of parametric models, with polynomials,
exponentials, rationals, sums of Gaussians, Fourier polynomials, and
many others.

- You can also define custom models to precisely reflect the goals of your
data analysis.

- Nonparametric models are available through a variety of smoothers
and interpolants.

• Fitting methods for linear least squares, nonlinear least squares, weighted
least squares, constrained least squares, and robust fitting are available

• Data and fit statistics to assist you in analyzing your models

• Postprocessing capabilities that allow you to interpolate, extrapolate,
differentiate, and integrate the fit

• The ability to save your work in various formats, including workspace
variables, binary files, and automatically generated MATLAB code

Interactive and Programmatic Environments
Curve Fitting Toolbox software allows you to work in two different
environments:
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Product Overview

• An interactive environment, Curve Fitting Tool, which is composed of
multiple graphical user interfaces

• A programmatic environment that allows you to write object-oriented
MATLAB code using curve fitting methods

To open Curve Fitting Tool, type

cftool

To list the Curve Fitting Toolbox functions for use in MATLAB programming,
type

help curvefit

The code for any function can be opened in the MATLAB Editor by typing

edit function_name

Brief, command line help for any function is available by typing

help function_name

Complete documentation for any function is available by typing

doc function_name

You can change the way any toolbox function works by copying and renaming
its M-file, examining your copy in the editor, and then modifying it.

You can also extend the toolbox by adding your own M-files, or by using your
code in combination with functions from other toolboxes, such as Statistics
Toolbox™ or Optimization Toolbox™ software.

1-3
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1 Getting Started

Interactive Curve Fitting

In this section...

“Opening Curve Fitting Tool” on page 1-4

“Importing Data” on page 1-5

“Interactive Fitting” on page 1-6

“Analyzing the Fit” on page 1-17

“Saving Your Work” on page 1-20

Opening Curve Fitting Tool
The Curve Fitting Tool is a graphical user interface (GUI) that allows you to

• Visually explore one or more data sets and fits as scatter plots.

• Graphically evaluate the goodness of fit using residuals and prediction
bounds.

• Access additional interfaces for

- Importing, viewing, and smoothing data

- Fitting data, and comparing fits and data sets

- Marking data points to be excluded from a fit

- Selecting which fits and data sets are displayed in the tool

- Interpolating, extrapolating, differentiating, or integrating fits

You open Curve Fitting Tool with the cftool command.

cftool
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Interactive Curve Fitting

Importing Data
Before you can import data into Curve Fitting Tool, the data variables must
exist in the MATLAB® workspace. For this example, the data is stored in the
MATLAB file census.mat.

load census

The workspace now contains two new variables, cdate and pop:

• cdate is a column vector containing the years 1790 to 1990 in 10-year
increments.

• pop is a column vector with the US population figures that correspond
to the years in cdate.

You can import data into Curve Fitting Tool with the Data GUI. You open this
GUI by clicking the Data button on Curve Fitting Tool. As shown below,
the Data GUI consists of two panes: Data sets and Smooth. The Data Sets
pane allows you to
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1 Getting Started

• Import predictor (X) data, response (Y) data, and weights. If you do not
import weights, then they are assumed to be 1 for all data points.

• Specify the name of the data set.

• Preview the data.

To load cdate and pop into Curve Fitting Tool, select the appropriate variable
names from the X Data and Y Data lists. The data is then displayed in
the Preview window. Click the Create data set button to complete the
data import process.

The Smooth pane is described in “Preprocessing Data” on page 2-2.

Interactive Fitting
You fit data with the Fitting GUI. You open this GUI by clicking the Fitting
button on Curve Fitting Tool. The Fitting GUI consists of two parts: the Fit
Editor and the Table of Fits. The Fit Editor allows you to
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Interactive Curve Fitting

• Specify the fit name, the current data set, and the exclusion rule.

• Explore various fits to the current data set using a library or custom
equation, a smoothing spline, or an interpolant.

• Override the default fit options such as the coefficient starting values.

• Compare fit results including the fitted coefficients and goodness of fit
statistics.

The Table of Fits allows you to

• Keep track of all the fits and their data sets for the current session.

• Display a summary of the fit results.

• Save or delete the fit results.

The Data Fitting Procedure
For this example, begin by fitting the census data with a second degree
polynomial. Then continue fitting the data using polynomial equations up to
sixth degree, and a single-term exponential equation.

The data fitting procedure follows these general steps:

1 From the Fit Editor, click New Fit.

Note that this action always defaults to a linear polynomial fit type. You
use New Fit at the beginning of your curve fitting session, and when you
are exploring different fit types for a given data set.

2 Because the initial fit uses a second degree polynomial, select quadratic
polynomial from the Polynomial list. Name the fit poly2.

3 Click the Apply button or select the Immediate apply check box. The
library model, fitted coefficients, and goodness of fit statistics are displayed
in the Results area.

4 Fit the additional library equations.

1-7



1 Getting Started

For fits of a given type (for example, polynomials), you should use Copy Fit
instead of New Fit because copying a fit retains the current fit type state
thereby requiring fewer steps than creating a new fit each time.

The Fitting GUI is shown below with the results of fitting the census data
with a quadratic polynomial.
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Interactive Curve Fitting

The data, fit, and residuals are shown below. You display the residuals as a
line plot by selecting the menu item View > Residuals > Line plot from
Curve Fitting Tool.

����������	
�����
	����������
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The residuals indicate that a better fit may be possible. Therefore, you
should continue fitting the census data following the procedure outlined in
the beginning of this section.

The residuals from a good fit should look random with no apparent pattern. A
pattern, such as a tendency for consecutive residuals to have the same sign,
can be an indication that a better model exists.

When you fit higher degree polynomials, the Results area displays this
warning:

Equation is badly conditioned. Remove repeated data points
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1 Getting Started

or try centering and scaling.

The warning arises because the fitting procedure uses the cdate values as
the basis for a matrix with very large values. The spread of the cdate values
results in scaling problems. To address this problem, you can normalize the
cdate data. Normalization is a process of scaling the predictor data to improve
the accuracy of the subsequent numeric computations. A way to normalize
cdate is to center it at zero mean and scale it to unit standard deviation.

(cdate - mean(cdate))./std(cdate)

To normalize data with Curve Fitting Tool, select the Center and scale X
data check box.

Note Because the predictor data changes after normalizing, the values of the
fitted coefficients also change when compared to the original data. However,
the functional form of the data and the resulting goodness of fit statistics do
not change. Additionally, the data is displayed in Curve Fitting Tool using
the original scale.

Determining the Best Fit
To determine the best fit, you should examine both the graphical and
numerical fit results.

Examining the Graphical Fit Results. Your initial approach in determining
the best fit should be a graphical examination of the fits and residuals. The
graphical fit results shown below indicate that

• The fits and residuals for the polynomial equations are all similar, making
it difficult to choose the best one.

• The fit and residuals for the single-term exponential equation indicate it is
a poor fit overall. Therefore, it is a poor choice for extrapolation.
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Interactive Curve Fitting

Use the Plotting GUI to remove exp1 from the scatter plot display.
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1 Getting Started

Because the goal of fitting the census data is to extrapolate the best fit to
predict future population values, you should explore the behavior of the fits
up to the year 2050. You can change the axes limits of Curve Fitting Tool by
selecting the menu item Tools > Axes Limit Control.

The census data and fits are shown below for an upper abscissa limit of 2050.
The behavior of the sixth degree polynomial fit beyond the data range makes
it a poor choice for extrapolation.

����������	
�����
	����������
�����������������������������

As you can see, you should exercise caution when extrapolating with
polynomial fits because they can diverge wildly outside the data range.
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Examining the Numerical Fit Results. Because you can no longer
eliminate fits by examining them graphically, you should examine the
numerical fit results. There are two types of numerical fit results displayed
in the Fitting GUI: goodness of fit statistics and confidence intervals on the
fitted coefficients. The goodness of fit statistics help you determine how well
the curve fits the data. The confidence intervals on the coefficients determine
their accuracy.

Some goodness of fit statistics are displayed in the Results area of the Fit
Editor for a single fit. All goodness of fit statistics are displayed in the Table
of Fits for all fits, which allows for easy comparison.

In this example, the sum of squares due to error (SSE) and the adjusted
R-square statistics are used to help determine the best fit. The SSE statistic
is the least-squares error of the fit, with a value closer to zero indicating a
better fit. The adjusted R-square statistic is generally the best indicator of the
fit quality when you add additional coefficients to your model.

You can modify the information displayed in the Table of Fits with the Table
Options GUI. You open this GUI by clicking the Table options button on
the Fitting GUI. As shown below, select the adjusted R-square statistic and
clear the R-square statistic.
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1 Getting Started

The numerical fit results are shown below. You can click the Table of Fits
column headings to sort by statistics results.

The SSE for exp1 indicates it is a poor fit, which was already determined by
examining the fit and residuals. The lowest SSE value is associated with
poly6. However, the behavior of this fit beyond the data range makes it a poor
choice for extrapolation. The next best SSE value is associated with the fifth
degree polynomial fit, poly5, suggesting it may be the best fit. However, the
SSE and adjusted R-square values for the remaining polynomial fits are all
very close to each other. Which one should you choose?
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Interactive Curve Fitting

To resolve this issue, examine the confidence bounds for the remaining fits. By
default, 95% confidence bounds are calculated. You can change this level by
selecting the menu item View > Confidence Level from Curve Fitting Tool.

The p1, p2, and p3 coefficients for the fifth degree polynomial suggest that it
overfits the census data. However, the confidence bounds for the quadratic
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1 Getting Started

fit, poly2, indicate that the fitted coefficients are known fairly accurately.
Therefore, after examining both the graphical and numerical fit results, it
appears that you should use poly2 to extrapolate the census data.

Note The fitted coefficients associated with the constant, linear, and
quadratic terms are nearly identical for each polynomial equation. However,
as the polynomial degree increases, the coefficient bounds associated with the
higher degree terms increase, which suggests overfitting.

Saving the Fit Results
By clicking the Save to workspace button, you can save the selected fit and
the associated fit results to the MATLAB workspace. The fit is saved as a
MATLAB object and the associated fit results are saved as structures. This
example saves all the fit results for the best fit, poly2.

fittedmodel1 is saved as a Curve Fitting Toolbox™ cfit object.

whos fittedmodel1

Name Size Bytes Class
fittedmodel1 1x1 6178 cfit object

Grand total is 386 elements using 6178 bytes

The cfit object display includes the model, the fitted coefficients, and the
confidence bounds for the fitted coefficients.

fittedmodel1
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Interactive Curve Fitting

fittedmodel1 =
Linear model Poly2:

fittedmodel1(x) = p1*x^2 + p2*x + p3
Coefficients (with 95% confidence bounds):

p1 = 0.006541 (0.006124, 0.006958)
p2 = -23.51 (-25.09, -21.93)
p3 = 2.113e+004 (1.964e+004, 2.262e+004)

The goodness1 structure contains goodness of fit results.

goodness1

goodness1 =
sse: 159.0293

rsquare: 0.9987
dfe: 18

adjrsquare: 0.9986
rmse: 2.9724

The output1 structure contains additional information associated with the fit.

output1

output1 =
numobs: 21

numparam: 3
residuals: [21x1 double]
Jacobian: [21x3 double]
exitflag: 1

algorithm: 'QR factorization and solve'

Analyzing the Fit
You can evaluate (interpolate or extrapolate), differentiate, or integrate a fit
over a specified data range with the Analysis GUI. You open this GUI by
clicking the Analysis button on Curve Fitting Tool.

For this example, you will extrapolate the quadratic polynomial fit to predict
the US population from the year 2000 to the year 2050 in 10 year increments,
and then plot both the analysis results and the data. To do this:
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1 Getting Started

• Enter the appropriate MATLAB vector in the Analyze at Xi field.

• Select the Evaluate fit at Xi check box.

• Select the Plot results and Plot data set check boxes.

• Click the Apply button.

The numerical extrapolation results are shown below.

The extrapolated values and the census data set are displayed together in
a new figure window.
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Interactive Curve Fitting

Saving the Analysis Results
By clicking the Save to workspace button, you can save the extrapolated
values as a structure to the MATLAB workspace.

The resulting structure is shown below.

analysisresults1

analysisresults1 =
xi: [6x1 double]

yfit: [6x1 double]
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1 Getting Started

Saving Your Work
Curve Fitting Toolbox software provides you with several options for saving
your work. You can save one or more fits and the associated fit results as
variables to the MATLAB workspace. You can then use this saved information
for documentation purposes, or to extend your data exploration and analysis.
In addition to saving your work to MATLAB workspace variables, you can

• “Save the Session” on page 1-20

• “Generate an M-File” on page 1-21

Before performing any of these tasks, you may want to remove unwanted data
sets and fits from Curve Fitting Tool display. An easy way to do this is with
the Plotting GUI. The Plotting GUI shown below is configured to display only
the census data and the best fit, poly2.

Save the Session
The curve fitting session is defined as the current collection of fits for all
data sets. You may want to save your session so that you can continue data
exploration and analysis at a later time using Curve Fitting Tool without
losing any current work.

Save the current curve fitting session by selecting the menu item File > Save
Session from Curve Fitting Tool. The Save Session dialog is shown below.
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Interactive Curve Fitting

The session is stored in binary form in a cfit file, and contains this
information:

• All data sets and associated fits

• The state of the Fitting GUI, including Table of Fits entries and exclusion
rules

• The state of the Plotting GUI

To avoid saving unwanted data sets, you should delete them from Curve
Fitting Tool. You delete data sets using the Data Sets pane of the Data GUI. If
there are fits associated with the unwanted data sets, they are deleted as well.

You can load a saved session by selecting the menu item File > Load Session
from Curve Fitting Tool. When the session is loaded, the saved state of Curve
Fitting Tool display is reproduced, and may display the data, fits, residuals,
and so on. If you open the Fitting GUI, then the loaded fits are displayed in
the Table of Fits. Select a fit from this table to continue your curve fitting
session.

Generate an M-File
You may want to generate an M-file that captures your work, so that you can
continue your analysis outside of Curve Fitting Tool. The M-file can be used
without modification, or it can be edited as needed.
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1 Getting Started

To generate an M-file from a session in Curve Fitting Tool, select the menu
item File > Generate M-file.

The M-file captures the following information from Curve Fitting Tool:

• Names of variables, fits, and residuals

• Fit options, such as whether the data should be normalized, initial values
for the coefficients, and the fitting method

• Curve fitting objects and methods used to create the fit

You can recreate your Curve Fitting Tool session by calling the M-file from
the command line with your original data as input arguments. You can also
call the M-file with new data, and automate the process of fitting multiple
data sets.

For more information on working with a generated M-file, see “Interactive
Code Generation” on page 1-26.
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Programmatic Curve Fitting

Programmatic Curve Fitting

In this section...

“Curve Fitting Objects and Methods” on page 1-23

“Interactive Code Generation” on page 1-26

Curve Fitting Objects and Methods
The Curve Fitting Tool is a graphical user interface that allows convenient,
interactive use of Curve Fitting Toolbox™ functions, without programming.
You can, however, access Curve Fitting Toolbox functions directly, and write
programs that combine curve fitting functions with MATLAB® functions and
functions from other toolboxes. This allows you to create a curve fitting
environment that is precisely suited to your needs.

Models and fits in Curve Fitting Tool are managed internally as curve
fitting objects. Objects are manipulated through a variety of functions called
methods. You can create curve fitting objects, and apply curve fitting methods,
outside of Curve Fitting Tool.

For example, the following code, using Curve Fitting Toolbox methods,
reproduces an analysis of the census data that was carried out interactively in
Curve Fitting Tool in “Interactive Curve Fitting” on page 1-4.

Load and plot the data in census.mat:

load census
plot(cdate,pop,'o')
hold on
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Create a fit options structure and a fittype object for the custom nonlinear
model y = a(x–b)n, where a and b are coefficients and n is a problem-dependent
parameter:

s = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0,0],...
'Upper',[Inf,max(cdate)],...
'Startpoint',[1 1]);

f = fittype('a*(x-b)^n','problem','n','options',s);

Fit the data using the fit options and a value of n = 2:

[c2,gof2] = fit(cdate,pop,f,'problem',2)
c2 =

General model:
c2(x) = a*(x-b)^n

Coefficients (with 95% confidence bounds):
a = 0.006092 (0.005743, 0.006441)
b = 1789 (1784, 1793)

Problem parameters:
n = 2

gof2 =
sse: 246.1543
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rsquare: 0.9980
dfe: 19

adjrsquare: 0.9979
rmse: 3.5994

Fit the data using the fit options and a value of n = 3:

[c3,gof3] = fit(cdate,pop,f,'problem',3)
c3 =

General model:
c3(x) = a*(x-b)^n

Coefficients (with 95% confidence bounds):
a = 1.359e-005 (1.245e-005, 1.474e-005)
b = 1725 (1718, 1731)

Problem parameters:
n = 3

gof3 =
sse: 232.0058

rsquare: 0.9981
dfe: 19

adjrsquare: 0.9980
rmse: 3.4944

Plot the fit results with the data:

plot(c2,'m')
plot(c3,'c')
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Interactive Code Generation
Curve fitting code can be assembled into an M-file by hand, as shown in
“Curve Fitting Objects and Methods” on page 1-23, or it can be generated
automatically from an interactive session in Curve Fitting Tool, as
described in “Generate an M-File” on page 1-21. In practice, automatically
generated code, giving the broad outlines of an analysis, can be combined
with hand-coded refinements. This allows you to write functions that are
customized to your data and your analysis, without having to write all of
the basic programming structures.

For example, the following M-file was generated from a session in Curve
Fitting Tool that imported the data from census.mat and fit a custom
nonlinear model of the form y = a(x–b)3:

function myfit(cdate,pop)
%MYFIT Create plot of datasets and fits
% MYFIT(CDATE,POP)
% Creates a plot, similar to the plot in the main curve fitting
% window, using the data that you provide as input. You can
% apply this function to the same data you used with cftool
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% or with different data. You may want to edit the function to
% customize the code and this help message.
%
% Number of datasets: 1
% Number of fits: 1

% Data from dataset "pop vs. cdate":
% X = cdate:
% Y = pop:
% Unweighted
%
% This function was automatically generated on 11-Sep-2007 01:07:11

% Set up figure to receive datasets and fits
f_ = clf;
figure(f_);
set(f_,'Units','Pixels','Position',[439.6 193.6 814.4 576.8]);
legh_ = []; legt_ = {}; % handles and text for legend
xlim_ = [Inf -Inf]; % limits of x axis
ax_ = axes;
set(ax_,'Units','normalized','OuterPosition',[0 0 1 1]);
set(ax_,'Box','on');
axes(ax_); hold on;

% --- Plot data originally in dataset "pop vs. cdate"
cdate = cdate(:);
pop = pop(:);
h_ = line(cdate,pop,'Parent',ax_,'Color',[0.333333 0 0.666667],...

'LineStyle','none', 'LineWidth',1,...
'Marker','.', 'MarkerSize',12);

xlim_(1) = min(xlim_(1),min(cdate));
xlim_(2) = max(xlim_(2),max(cdate));
legh_(end+1) = h_;
legt_{end+1} = 'pop vs. cdate';

% Nudge axis limits beyond data limits
if all(isfinite(xlim_))

xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_);
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set(ax_,'XLim',xlim_)
else

set(ax_, 'XLim',[1788, 1992]);
end

% --- Create fit "fit 1"
ok_ = isfinite(cdate) & isfinite(pop);
if ~all( ok_ )

warning( 'GenerateMFile:IgnoringNansAndInfs', ...
'Ignoring NaNs and Infs in data' );

end
st_ = [0.51510504095942344 0.35210694524343056 ];
ft_ = fittype('a*(x-b)^3',...

'dependent',{'y'},'independent',{'x'},...
'coefficients',{'a', 'b'});

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft_,'Startpoint',st_);

% Or use coefficients from the original fit:
if 0

cv_ = { 1.3594203554767276e-005, 1724.6959436137356};
cf_ = cfit(ft_,cv_{:});

end

% Plot this fit
h_ = plot(cf_,'fit',0.95);
legend off; % turn off legend from plot method call
set(h_(1),'Color',[1 0 0],...

'LineStyle','-', 'LineWidth',2,...
'Marker','none', 'MarkerSize',6);

legh_(end+1) = h_(1);
legt_{end+1} = 'fit 1';

% Done plotting data and fits. Now finish up loose ends.
hold off;
leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};
h_ = legend(ax_,legh_,legt_,leginfo_{:}); % create legend
set(h_,'Interpreter','none');
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xlabel(ax_,''); % remove x label
ylabel(ax_,''); % remove y label

A quick look through the code shows that it has automatically assembled
for you many of the Curve Fitting Toolbox curve fitting methods, such as
fitoptions, fittype, fit, and plot.

A natural modification of the M-file would be to edit the function declaration
at the top of the file to return the cfit object created by the fit, as follows:

function cf_ = myfit(cdate,pop)

You might also modify the code to produce a variety of different plots, or to
return goodness-of-fit statistics.

Coding with curve fitting objects and methods is given complete treatment in
Chapter 3, “Programmatic Curve Fitting”.
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2 Interactive Curve Fitting

Preprocessing Data

In this section...

“Importing Data” on page 2-2

“Viewing Data” on page 2-6

“Smoothing Data” on page 2-9

“Excluding and Sectioning Data” on page 2-17

“Missing Values and Outliers” on page 2-27

Importing Data

• “Introduction” on page 2-2

• “Creating a Data Set” on page 2-3

• “Working with Data Sets” on page 2-4

• “Example: Importing Data” on page 2-4

Introduction
You import data sets into Curve Fitting Tool with the Data Sets pane of the
Data GUI. Using this pane, you can

• Select workspace variables that compose a data set

• Display a list of all imported data sets

• View, delete, or rename one or more data sets

The Data Sets pane is shown below followed by a description of its features.
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Creating a Data Set

• Import workspace vectors — All selected variables must be the same
length. You can import only vectors, not matrices or scalars. Infs and NaNs
are ignored because you cannot fit data containing these values, and only
the real part of a complex number is used. To perform any curve-fitting
task, you must select at least one vector of data:

- X data — Select the predictor data.

- Y data — Select the response data.

- Weights — Select the weights associated with the response data. If
weights are not imported, they are assumed to be 1 for all data points.

• Preview — The selected workspace vectors are displayed graphically in
the preview window. Weights are not displayed.

• Data set name — The name of the imported data set. The toolbox
automatically creates a unique name for each imported data set. You can
change the name by editing this field. Click the Create data set button to
complete the data import process.
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Working with Data Sets

• Data sets — Lists all data sets added to Curve Fitting Tool. The data sets
can be created from workspace variables, or from smoothing an existing
imported data set. When you select a data set, you can perform these
actions:

- Click View to open the View Data Set GUI. Using this GUI, you can view
a single data set both graphically and numerically. Additionally, you can
display data points to be excluded in a fit by selecting an exclusion rule.

- Click Rename to change the name of a single data set.

- Click Delete to delete one or more data sets. To select multiple data sets,
you can use the Ctrl key and the mouse to select data sets one by one, or
you can use the Shift key and the mouse to select a range of data sets.

Example: Importing Data
This example imports the ENSO data set into the Curve Fitting Tool using
the Data Sets pane of the Data GUI. The first step is to load the data from
the file enso.mat into the MATLAB® workspace.

load enso

The workspace contains two new variables, pressure and month:

• pressure is the monthly averaged atmospheric pressure differences
between Easter Island and Darwin, Australia. This difference drives the
trade winds in the southern hemisphere.

• month is the relative time in months.

Alternatively, you can import data by specifying the variable names as
arguments to the cftool function.

cftool(month,pressure)

In this case, the Data GUI is not opened.

The data import process is described below:

1 Select workspace variables.
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The predictor and response data are displayed graphically in the Preview
window. Weights and data points containing Infs or NaNs are not displayed.

2 Specify the data set name.

You should specify a meaningful name when you import multiple data sets.
If you do not specify a name, the default name, which is constructed from
the selected variable names, is used.

3 Click the Create data set button.

The Data sets list box displays all the data sets added to the toolbox. Note
that you can construct data sets from workspace variables, or by smoothing
an existing data set.

If your data contains Infs or complex values, a warning message like this
appears.

After you click the Create data set window.

The Data Sets pane shown below displays the imported ENSO data in the
Preview button, the data set enso is added to the Data sets list box. You can
then view, rename, or delete enso by selecting it in the list box and clicking
the appropriate button.
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Viewing Data

• “Viewing Data Graphically” on page 2-6

• “Viewing Data Numerically” on page 2-8

Viewing Data Graphically
After you import a data set, it is automatically displayed as a scatter plot in
Curve Fitting Tool. The response data is plotted on the vertical axis and the
predictor data is plotted on the horizontal axis.

The scatter plot is a powerful tool because it allows you to view the entire data
set at once, and it can easily display a wide range of relationships between the
two variables. You should examine the data carefully to determine whether
preprocessing is required, or to deduce a reasonable fitting approach. For
example, it’s typically very easy to identify outliers in a scatter plot, and to
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determine whether you should fit the data with a straight line, a periodic
function, a sum of Gaussians, and so on.

Enhancing the Graphical Display. Curve Fitting Toolbox™ software
provides several tools for enhancing the graphical display of a data set. These
tools are available through the Tools menu, the GUI toolbar, and right-click
menus.

You can zoom in or out, turn on or off the grid, and so on using the Tools
menu and the GUI toolbar shown below.
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You can change the color, line width, line style, and marker type of the
displayed data points using the right-click menu shown below. You activate
this menu by placing your mouse over a data point and right-clicking. Note
that a similar menu is available for fitted curves.
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The ENSO data is shown below after the display has been enhanced using
several of these tools.
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Viewing Data Numerically
You can view the numerical values of a data set, as well as data points to
be excluded from subsequent fits, with the View Data Set GUI. You open
this GUI by selecting a name in the Data sets list box of the Data GUI and
clicking the View button.
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The View Data Set GUI for the ENSO data set is shown below, followed by
a description of its features.

• Data set — Lists the names of the viewed data set and the associated
variables. The data is displayed graphically below this list.

The index, predictor data (X), response data (Y), and weights (if imported)
are displayed numerically in the table. If the data contains Infs or NaNs,
those values are labeled “ignored.” If the data contains complex numbers,
only the real part is displayed.

• Exclusion rules — Lists all the exclusion rules that are compatible with
the viewed data set. When you select an exclusion rule, the data points
marked for exclusion are grayed in the table, and are identified with an
“x” in the graphical display. To exclude the data points while fitting, you
must create the exclusion rule in the Exclude GUI and select the exclusion
rule in the Fitting GUI.

An exclusion rule is compatible with the viewed data set if their lengths
are the same, or if it is created by sectioning only.

Smoothing Data

• “Introduction” on page 2-10

• “Creating a Smoothed Data Set” on page 2-12
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• “Smoothing Method” on page 2-12

• “Working with Smoothed Data Sets” on page 2-13

• “Example: Smoothing Data” on page 2-13

Introduction
If your data is noisy, you might need to apply a smoothing algorithm to expose
its features, and to provide a reasonable starting approach for parametric
fitting. The two basic assumptions that underlie smoothing are

• The relationship between the response data and the predictor data is
smooth.

• The smoothing process results in a smoothed value that is a better estimate
of the original value because the noise has been reduced.

The smoothing process attempts to estimate the average of the distribution
of each response value. The estimation is based on a specified number of
neighboring response values.

You can think of smoothing as a local fit because a new response value is
created for each original response value. Therefore, smoothing is similar
to some of the nonparametric fit types supported by the toolbox, such as
smoothing spline and cubic interpolation. However, this type of fitting is not
the same as parametric fitting, which results in a global parameterization
of the data.

Note You should not fit data with a parametric model after smoothing,
because the act of smoothing invalidates the assumption that the errors are
normally distributed. Instead, you should consider smoothing to be a data
exploration technique.

There are two common types of smoothing methods: filtering (averaging) and
local regression. Each smoothing method requires a span. The span defines
a window of neighboring points to include in the smoothing calculation for
each data point. This window moves across the data set as the smoothed
response value is calculated for each predictor value. A large span increases
the smoothness but decreases the resolution of the smoothed data set, while
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a small span decreases the smoothness but increases the resolution of the
smoothed data set. The optimal span value depends on your data set and the
smoothing method, and usually requires some experimentation to find.

Curve Fitting Toolbox software supports these smoothing methods:

• Moving average filtering — Lowpass filter that takes the average of
neighboring data points.

• Lowess and loess — Locally weighted scatter plot smooth. These methods
use linear least-squares fitting, and a first-degree polynomial (lowess) or a
second-degree polynomial (loess). Robust lowess and loess methods that
are resistant to outliers are also available.

• Savitzky-Golay filtering — A generalized moving average where you derive
the filter coefficients by performing an unweighted linear least-squares fit
using a polynomial of the specified degree.

Note that you can also smooth data using a smoothing spline. Refer to
“Nonparametric Fitting” on page 2-75 for more information.

You smooth data with the Smooth pane of the Data GUI. The pane is shown
below followed by a description of its features.
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Creating a Smoothed Data Set

• Original data set — Select the data set you want to smooth.

• Smoothed data set — Specify the name of the smoothed data set. Note
that the process of smoothing the original data set always produces a new
data set containing smoothed response values.

Smoothing Method

• Method — Select the smoothing method. Each response value is replaced
with a smoothed value that is calculated by the specified smoothing method.

- Moving average — Filter the data by calculating an average.

- Lowess — Locally weighted scatter plot smooth using linear
least-squares fitting and a first-degree polynomial.
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- Loess — Locally weighted scatter plot smooth using linear least-squares
fitting and a second-degree polynomial.

- Savitzky-Golay — Filter the data with an unweighted linear
least-squares fit using a polynomial of the specified degree.

- Robust Lowess — Lowess method that is resistant to outliers.

- Robust Loess — Loess method that is resistant to outliers.

• Span — The number of data points used to compute each smoothed value.

For the moving average and Savitzky-Golay methods, the span must be
odd. For all locally weighted smoothing methods, if the span is less than 1,
it is interpreted as the percentage of the total number of data points.

• Degree — The degree of the polynomial used in the Savitzky-Golay
method. The degree must be smaller than the span.

Working with Smoothed Data Sets

• Smoothed data sets — Lists all the smoothed data sets. You add a
smoothed data set to the list by clicking the Create smoothed data set
button. When you select a data set from the list, you can perform these
actions:

- Click View to open the View Data Set GUI. Using this GUI, you can view
a single data set both graphically and numerically. Additionally, you can
display data points to be excluded in a fit by selecting an exclusion rule.

- Click Rename to change the name of a single data set.

- Click Delete to delete one or more data sets. To select multiple data sets,
you can use the Ctrl key and the mouse to select data sets one by one, or
you can use the Shift key and the mouse to select a range of data sets.

- Click Save to workspace to save a single data set to a structure.

Example: Smoothing Data
This example smooths the ENSO data set using the moving average, lowess,
loess, and Savitzky-Golay methods with the default span. As shown below, the
data appears noisy. Smoothing might help you visualize patterns in the data,
and provide insight toward a reasonable approach for parametric fitting.
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The Smooth pane shown below displays all the new data sets generated by
smoothing the original ENSO data set. Whenever you smooth a data set,
a new data set of smoothed values is created. The smoothed data sets are
automatically displayed in Curve Fitting Tool. You can also display a single
data set graphically and numerically by clicking the View button.
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Use the Plotting GUI to display only the data sets of interest. As shown
below, the periodic structure of the ENSO data set becomes apparent when
it is smoothed using a moving average filter with the default span. Not
surprisingly, the uncovered structure is periodic, which suggests that a
reasonable parametric model should include trigonometric functions.
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Saving the Results. By clicking the Save to workspace button, you can
save a smoothed data set as a structure to the MATLAB workspace. This
example saves the moving average results contained in the enso (ma) data set.

2-16



Preprocessing Data

The saved structure contains the original predictor data x and the smoothed
data y.

smootheddata1

smootheddata1 =
x: [168x1 double]
y: [168x1 double]

Excluding and Sectioning Data

• “Introduction” on page 2-17

• “Exclusion Rules” on page 2-18

• “Excluding Individual Data Points” on page 2-19

• “Excluding Data Sections in the Domain or Range” on page 2-19

• “Marking Outliers” on page 2-19

• “Sectioning” on page 2-22

• “Example: Excluding and Sectioning Data” on page 2-24

Introduction
If there is justification, you might want to exclude part of a data set from
a fit. Typically, you exclude data so that subsequent fits are not adversely
affected. For example, if you are fitting a parametric model to measured
data that has been corrupted by a faulty sensor, the resulting fit coefficients
will be inaccurate.

Curve Fitting Toolbox software provides two methods to exclude data:

• Marking Outliers — Outliers are defined as individual data points that
you exclude because they are inconsistent with the statistical nature of
the bulk of the data.

• Sectioning — Sectioning excludes a window of response or predictor data.
For example, if many data points in a data set are corrupted by large
systematic errors, you might want to section them out of the fit.
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For each of these methods, you must create an exclusion rule, which captures
the range, domain, or index of the data points to be excluded.

To exclude data while fitting, you use the Fitting GUI to associate the
appropriate exclusion rule with the data set to be fit. Refer to “Example:
Robust Fitting” on page 2-69 for more information about fitting a data set
using an exclusion rule.

You mark data to be excluded from a fit with the Exclude GUI, which you open
from Curve Fitting Tool. The GUI is shown below followed by a description of
its features.

Exclusion Rules

• Exclusion rule name — Specify the name of the exclusion rule that
identifies the data points to be excluded from subsequent fits.

• Existing exclusion rules — Lists the names of all exclusion rules created
during the current session. When you select an existing exclusion rule, you
can perform these actions:

- Click Copy to copy the exclusion rule. The exclusions associated with
the original exclusion rule are recreated in the GUI. You can modify
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these exclusions and then click Create exclusion rule to save them to
the copied rule.

- Click Rename to change the name of the exclusion rule.

- Click Delete to delete the exclusion rule. To select multiple exclusion
rules, you can use the Ctrl key and the mouse to select exclusion rules
one by one, or you can use the Shift key and the mouse to select a range
of exclusion rules.

- Click View to display the exclusion rule graphically. If a data set is
associated with the exclusion rule, the data is also displayed.

Excluding Individual Data Points

• Select data set — Select the data set from which data points will be
marked as excluded. You must select a data set to exclude individual
data points.

• Exclude graphically — Open a GUI that allows you to exclude individual
data points graphically.

Individually excluded data points are marked by an “x” in the GUI, and are
automatically identified in the Check to exclude point table.

• Check to exclude point — Select individual data points to exclude. You
can sort this table by clicking on any of the column headings.

Excluding Data Sections in the Domain or Range

• Section — Specify data to be excluded. You do not need to select a data set
to create an exclusion rule by sectioning.

- Exclude X — Specify beginning and ending intervals in the predictor
data to be excluded.

- Exclude Y — Specify beginning and ending intervals in the response
data to be excluded.

Marking Outliers
Outliers are defined as individual data points that you exclude from a fit
because they are inconsistent with the statistical nature of the bulk of the
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data, and will adversely affect the fit results. Outliers are often readily
identified by a scatter plot of response data versus predictor data.

Marking outliers with Curve Fitting Tool follows these rules:

• You must specify a data set before creating an exclusion rule.

In general, you should use the exclusion rule only with the specific data set
it was based on. However, the toolbox does not prevent you from using the
exclusion rule with another data set provided the size is the same.

• Using the Exclude GUI, you can exclude outliers either graphically or
numerically.

As described in “Parametric Fitting” on page 2-30, one of the basic
assumptions underlying curve fitting is that the data is statistical in nature
and is described by a particular distribution, which is often assumed to be
Gaussian. The statistical nature of the data implies that it contains random
variations along with a deterministic component.

data = deterministic component + random component

However, your data set might contain one or more data points that
are non-statistical in nature, or are described by a different statistical
distribution. These data points might be easy to identify, or they might be
buried in the data and difficult to identify.

A non-statistical process can involve the measurement of a physical variable
such as temperature or voltage in which the random variation is negligible
compared to the systematic errors. For example, if your sensor calibration
is inaccurate, the data measured with that sensor will be systematically
inaccurate. In some cases, you might be able to quantify this non-statistical
data component and correct the data accordingly. However, if the scatter plot
reveals that a handful of response values are far removed from neighboring
response values, these data points are considered outliers and should be
excluded from the fit. Outliers are usually difficult to explain away. For
example, it might be that your sensor experienced a power surge or someone
wrote down the wrong number in a log book.

If you decide there is justification, you should mark outliers to be excluded
from subsequent fits—particularly parametric fits. Removing these data
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points can have a dramatic effect on the fit results because the fitting process
minimizes the square of the residuals. If you do not exclude outliers, the
resulting fit will be poor for a large portion of your data. Conversely, if you
do exclude the outliers and choose the appropriate model, the fit results
should be reasonable.

Because outliers can have a significant effect on a fit, they are considered
influential data. However, not all influential data points are outliers. For
example, your data set can contain valid data points that are far removed
from the rest of the data. The data is valid because it is well described by
the model used in the fit. The data is influential because its exclusion will
dramatically affect the fit results.

Two types of influential data points are shown below for generated data. Also
shown are cubic polynomial fits and a robust fit that is resistant to outliers.
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Plot (a) shows that the two influential data points are outliers and adversely
affect the fit. Plot (b) shows that the two influential data points are
consistent with the model and do not adversely affect the fit. Plot (c) shows
that a robust fitting procedure is an acceptable alternative to marking
outliers for exclusion.

Sectioning
Sectioning involves specifying response or predictor data to exclude. You
might want to section a data set because different parts of the data set are
described by different models or are corrupted by noise, large systematic
errors, and so on.

Sectioning data with Curve Fitting Tool follows these rules:

• If you are only sectioning data and not excluding individual data points,
then you can create an exclusion rule without specifying a data set name.

• You can associate an exclusion rule with any data set provided that the
exclusion rule overlaps with the data. This is useful if you have multiple
data sets from which you want to exclude data points using the same rule.

• Use the Exclude GUI to create the exclusion rule.

• You can exclude vertical strips at the edges of the data, horizontal strips
at the edges of the data, or a border around the data. Refer to “Example:
Excluding and Sectioning Data” on page 2-24 for an example.

• To exclude multiple sections of data, you can use the excludedata function
from the MATLAB command line.
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Two examples of sectioning by domain are shown below for generated data.

The upper shows the data set sectioned by fit type. The section to the left of 4
is fit with a linear polynomial, as shown by the bold, dashed line. The section
to the right of 4 is fit with a cubic polynomial, as shown by the bold, solid line.

The lower plot shows the data set sectioned by fit type and by valid data.
Here, the right-most section is not part of any fit because the data is corrupted
by noise.

Note For illustrative purposes, the preceding figures have been enhanced
to show portions of the curves with bold markers. Curve Fitting Toolbox
software does not use bold markers in plots.
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Example: Excluding and Sectioning Data
This example modifies the ENSO data set to illustrate excluding and
sectioning data. First, copy the ENSO response data to a new variable and
add two outliers that are far removed from the bulk of the data.

yy = pressure;
yy(ceil(length(month)*rand(1))) = mean(pressure)*2.5;
yy(ceil(length(month)*rand(1))) = mean(pressure)*3.0;

Import the variables month and yy as the new data set enso1, and open the
Exclude GUI.

Assume that the first and last eight months of the data set are unreliable, and
should be excluded from subsequent fits. The simplest way to exclude these
data points is to section the predictor data. To do this, specify the data you
want to exclude in the Exclude Sections field of the Exclude GUI.

There are two ways to exclude individual data points: using the Check to
exclude point table or graphically. For this example, the simplest way to
exclude the outliers is graphically. To do this, select the data set name and
click the Exclude graphically button, which opens the Select Points for
Exclusion Rule GUI.

To mark data points for exclusion in the GUI, place the mouse cursor over
the data point and left-click. The excluded data point is marked with a red
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x. To include an excluded data point, right-click the data point or select the
Includes Them radio button and left-click. Included data points are marked
with a blue circle. To select multiple data points, click the left mouse button
and drag the selection rubber band so that the rubber band box encompasses
the desired data points. Note that the GUI identifies sectioned data with gray
strips. You cannot graphically include sectioned data.

As shown below, the first and last eight months of data are excluded from
the data set by sectioning, and the two outliers are excluded graphically.
Note that the graphically excluded data points are identified in the Check to
exclude point table. If you decide to include an excluded data point using
the table, the graph is automatically updated.

If there are fits associated with the data, you can exclude data points based on
the residuals of the fit by selecting the residual data in the Y list.
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The Exclude GUI for this example is shown below.

To save the exclusion rule, click the Create exclusion rule button. To
exclude the data from a fit, you must select the exclusion rule from the Fitting
GUI. Because the exclusion rule created in this example uses individually
excluded data points, you can use it only with data sets that are the same
size as the ENSO data set.

Viewing the Exclusion Rule. To view the exclusion rule, select an existing
exclusion rule name and click the View button.
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The View Exclusion Rule GUI shown below displays the modified ENSO data
set and the excluded data points, which are grayed in the table.

Missing Values and Outliers
Although Curve Fitting Toolbox software ignores Infs and NaNs when fitting
data, and you can exclude outliers during the fitting process, you might
still want to remove this data from your data set. To do so, you modify the
associated data set variables from the MATLAB command line.

For example, when using toolbox functions such as fit from the command
line, you must supply predictor and response vectors that contain finite
numbers. To remove Infs, you can use the isinf function.

ind = find(isinf(xx));
xx(ind) = [];
yy(ind) = [];

To remove NaNs, you can use the isnan function. For examples that remove
NaNs and outliers from a data set, refer to “Missing Data” in the MATLAB
documentation.
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Fitting Data

In this section...

“The Fitting Process” on page 2-28

“Parametric Fitting” on page 2-30

“Nonparametric Fitting” on page 2-75

The Fitting Process
You fit data using the Fitting GUI. To open the Fitting GUI, click the Fitting
button from Curve Fitting Tool.

The Fitting GUI is shown below for the census data described in Chapter 1,
“Getting Started”, followed by the general steps you use when fitting any
data set.
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1 Select a data set and fit name.

• Select the name of the current fit. When you click New fit or Copy fit,
a default fit name is automatically created in the Fit name field. You
can specify a new fit name by editing this field.
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• Select the name of the current data set from the Data set list. All
imported and smoothed data sets are listed.

2 Select an exclusion rule.

If you want to exclude data from a fit, select an exclusion rule from the
Exclusion rule list. The list contains only exclusion rules that are
compatible with the current data set. An exclusion rule is compatible with
the current data set if their lengths are identical, or if it is created by
sectioning only.

3 Select a fit type and fit options, fit the data, and evaluate the goodness of fit.

• The fit type can be a library or custom parametric model, a smoothing
spline, or an interpolant.

• Select fit options such as the fitting algorithm, and coefficient starting
points and constraints. Depending on your data and model, accepting
the default fit options often produces an excellent fit.

• Fit the data by clicking the Apply button or by selecting the Immediate
apply check box.

• Examine the fitted curve, residuals, goodness of fit statistics, confidence
bounds, and prediction bounds for the current fit.

4 Compare fits.

• Compare the current fit and data set to previous fits and data sets by
examining the goodness of fit statistics.

• Use the Table Options GUI to modify which goodness of fit statistics are
displayed in the Table of Fits. You can sort the table by clicking on
any column heading.

5 Save the fit results.

If the fit is good, save the results as a structure to the MATLAB® workspace.
Otherwise, modify the fit options or select another model.

Parametric Fitting

• “Introduction” on page 2-31
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• “Library Models” on page 2-32

• “Custom Models” on page 2-37

• “Specifying Fit Options” on page 2-59

• “Example: Rational Fit” on page 2-63

• “Example: Robust Fitting” on page 2-69

Introduction
Parametric fitting involves finding coefficients (parameters) for one or more
models that you fit to data. The data is assumed to be statistical in nature
and is divided into two components: a deterministic component and a random
component.

data = deterministic component + random component

The deterministic component is given by a parametric model and the random
component is often described as error associated with the data.

data = model + error

The model is a function of the independent (predictor) variable and one or
more coefficients. The error represents random variations in the data that
follow a specific probability distribution (usually Gaussian). The variations
can come from many different sources, but are always present at some level
when you are dealing with measured data. Systematic variations can also
exist, but they can lead to a fitted model that does not represent the data well.

The model coefficients often have physical significance. For example,
suppose you have collected data that corresponds to a single decay mode of a
radioactive nuclide, and you want to estimate the half-life (T1/2) of the decay.
The law of radioactive decay states that the activity of a radioactive substance
decays exponentially in time. Therefore, the model to use in the fit is given by

where y0 is the number of nuclei at time t = 0, and λ is the decay constant.
The data can be described by
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Both y0 and λ are coefficients that are estimated by the fit. Because T1/2
= ln(2)/λ , the fitted value of the decay constant yields the fitted half-life.
However, because the data contains some error, the deterministic component
of the equation cannot be determined exactly from the data. Therefore, the
coefficients and half-life calculation will have some uncertainty associated
with them. If the uncertainty is acceptable, then you are done fitting the data.
If the uncertainty is not acceptable, then you might have to take steps to
reduce it either by collecting more data or by reducing measurement error
and collecting new data and repeating the model fit.

In other situations where there is no theory to dictate a model, you might also
modify the model by adding or removing terms, or substitute an entirely
different model.

Library Models
Curve Fitting Toolbox™ parametric library models are described below.

• “Exponentials” on page 2-32

• “Fourier Series” on page 2-33

• “Gaussian” on page 2-33

• “Polynomials” on page 2-34

• “Power Series” on page 2-35

• “Rationals” on page 2-35

• “Sum of Sines” on page 2-36

• “Weibull Distribution” on page 2-36

Exponentials. The toolbox provides a one-term and a two-term exponential
model.
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Exponentials are often used when the rate of change of a quantity is
proportional to the initial amount of the quantity. If the coefficient associated
with e is negative, y represents exponential decay. If the coefficient is positive,
y represents exponential growth.

For example, a single radioactive decay mode of a nuclide is described by a
one-term exponential. a is interpreted as the initial number of nuclei, b is the
decay constant, x is time, and y is the number of remaining nuclei after a
specific amount of time passes. If two decay modes exist, then you must use
the two-term exponential model. For each additional decay mode, you add
another exponential term to the model.

Examples of exponential growth include contagious diseases for which a cure
is unavailable, and biological populations whose growth is uninhibited by
predation, environmental factors, and so on.

Fourier Series. The Fourier series is a sum of sine and cosine functions
that is used to describe a periodic signal. It is represented in either the
trigonometric form or the exponential form. The toolbox provides the
trigonometric Fourier series form shown below,

where a0 models a constant (intercept) term in the data and is associated with
the i = 0 cosine term, w is the fundamental frequency of the signal, n is the
number of terms (harmonics) in the series, and .

For more information about the Fourier series, refer to in the MATLAB
documentation.

Gaussian. The Gaussian model is used for fitting peaks, and is given by
the equation
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where a is the amplitude, b is the centroid (location), c is related to the peak
width, n is the number of peaks to fit, and .

Gaussian peaks are encountered in many areas of science and engineering.
For example, line emission spectra and chemical concentration assays can be
described by Gaussian peaks.

Polynomials. Polynomial models are given by

where n + 1 is the order of the polynomial, n is the degree of the polynomial,
and . The order gives the number of coefficients to be fit, and the
degree gives the highest power of the predictor variable.

In this guide, polynomials are described in terms of their degree. For example,
a third-degree (cubic) polynomial is given by

Polynomials are often used when a simple empirical model is required. The
model can be used for interpolation or extrapolation, or it can be used to
characterize data using a global fit. For example, the temperature-to-voltage
conversion for a Type J thermocouple in the 0o to 760o temperature range is
described by a seventh-degree polynomial.

Note If you do not require a global parametric fit and want to maximize the
flexibility of the fit, piecewise polynomials might provide the best approach.
Refer to “Nonparametric Fitting” on page 2-75 for more information.

The main advantages of polynomial fits include reasonable flexibility for data
that is not too complicated, and they are linear, which means the fitting
process is simple. The main disadvantage is that high-degree fits can become
unstable. Additionally, polynomials of any degree can provide a good fit
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within the data range, but can diverge wildly outside that range. Therefore,
you should exercise caution when extrapolating with polynomials. Refer
to “Determining the Best Fit” on page 1-10 for examples of good and poor
polynomial fits to census data.

Note that when you fit with high-degree polynomials, the fitting procedure
uses the predictor values as the basis for a matrix with very large values,
which can result in scaling problems. To deal with this, you should normalize
the data by centering it at zero mean and scaling it to unit standard deviation.
You normalize data by selecting the Center and scale X data check box on
the Fitting GUI.

Power Series. The toolbox provides a one-term and a two-term power
series model.

Power series models are used to describe a variety of data. For example, the
rate at which reactants are consumed in a chemical reaction is generally
proportional to the concentration of the reactant raised to some power.

Rationals. Rational models are defined as ratios of polynomials and are
given by

where n is the degree of the numerator polynomial and , while m
is the degree of the denominator polynomial and . Note that the
coefficient associated with is always 1. This makes the numerator and
denominator unique when the polynomial degrees are the same.
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In this guide, rationals are described in terms of the degree of the
numerator/the degree of the denominator. For example, a quadratic/cubic
rational equation is given by

Like polynomials, rationals are often used when a simple empirical model
is required. The main advantage of rationals is their flexibility with data
that has complicated structure. The main disadvantage is that they become
unstable when the denominator is around zero. For an example that uses
rational polynomials of various degrees, refer to “Example: Rational Fit”
on page 2-63.

Sum of Sines. The sum of sines model is used for fitting periodic functions,
and is given by the equation

where a is the amplitude, b is the frequency, and c is the phase constant for
each sine wave term. n is the number of terms in the series and .
This equation is closely related to the Fourier series described previously. The
main difference is that the sum of sines equation includes the phase constant,
and does not include a constant (intercept) term.

Weibull Distribution. The Weibull distribution is widely used in reliability
and life (failure rate) data analysis. The toolbox provides the two-parameter
Weibull distribution

where a is the scale parameter and b is the shape parameter. Note that there
is also a three-parameter Weibull distribution with x replaced by x – c where
c is the location parameter. Additionally, there is a one-parameter Weibull
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distribution where the shape parameter is fixed and only the scale parameter
is fitted. To use these distributions, you must create a custom equation.

Curve Fitting Toolbox software does not fit Weibull probability distributions
to a sample of data. Instead, it fits curves to response and predictor data such
that the curve has the same shape as a Weibull distribution.

Custom Models

• “Custom Models vs. Library Models” on page 2-37

• “Creating Custom Models” on page 2-37

• “Editing and Saving Custom Models” on page 2-41

• “Example: Legendre Polynomial” on page 2-43

• “Example: Fourier Series” on page 2-49

• “Example: Gaussian with Exponential Background” on page 2-55

Custom Models vs. Library Models. If the toolbox library does not contain
a desired parametric equation, you can create your own custom equation.
Library models, however, offer the best chance for rapid convergence. This is
because:

• For most library models, optimal default coefficient starting points are
calculated. For custom models, the default starting points are chosen at
random on the interval [0,1].

• Library models use an analytic Jacobian; custom models use finite
differencing.

• When using the Analysis GUI, library models use analytic derivatives and
integrals if the integral can be expressed in closed form; custom models use
numerical approximations.

Creating Custom Models. Create custom equations with the New Custom
Equation GUI. Open the GUI in one of two ways:

• From Curve Fitting Tool, select Tools > Custom Equation.
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• From the Fitting GUI, select Custom Equations from the Type of fit list,
then click the New button.

The GUI contains two panes: one for creating linear custom equations and
one for creating general (nonlinear) custom equations.

Linear Equations

Linear models are linear combinations of (perhaps nonlinear) terms. They
are defined by equations that are linear in the parameters. Use the Linear
Equations pane on the New Custom Equation GUI to create custom linear
equations. Interface controls are described below.
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• Independent variable — Symbol representing the independent
(predictor) variable. The default symbol is x.

• Equation — Symbol representing the dependent (response) variable,
followed by the linear equation. The default symbol is y.

- Unknown Coefficients — The unknown coefficients to be determined
by the fit. The default symbols are a, b, c, and so on.

- Terms — Functions of the independent variable. These may be
nonlinear. Terms may not contain a coefficient to be fitted.

- Unknown constant coefficient — If selected, a constant term
(y-intercept) is included in the equation. Otherwise, a constant term
is not included.

- Add a term — Add a term to the equation. An unknown coefficient is
automatically added for each new term.

- Remove last term — Remove the last term added to the equation.

• Equation name — The name of the equation. By default, the name is
automatically updated to be identical to the custom equation given by
Equation. If you override the default, the name is no longer automatically
updated.

General Equations

General models are, in general, nonlinear combinations of (perhaps nonlinear)
terms. They are defined by equations that may be nonlinear in the parameters.
Use the General Equations pane on the New Custom Equation GUI to create
custom general equations. Interface controls are described below.
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• Independent variable — Symbol representing the independent
(predictor) variable. The default symbol is x.

• Equation — Symbol representing the dependent (response) variable,
followed by the general equation. The default symbol is y. As you type in
the terms of the equation, the unknown coefficients, associated starting
values, and constraints automatically populate the table. By default,
the starting values are randomly selected on the interval [0,1] and are
unconstrained.

You can immediately change the default starting values and constraints in
this table, or you can change them later using the Fit Options GUI.

• Equation name — The name of the equation. By default, the name is
automatically updated to be identical to the custom equation given by
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Equation. If you override the default, the name is no longer automatically
updated.

Note If you use the General Equations pane to define a linear equation, a
nonlinear fitting procedure is used. While this is allowed, it is inefficient, and
can result in less than optimal fitted coefficients. Use the Linear Equations
pane to define custom linear equations.

Editing and Saving Custom Models. When you click OK on the New
Custom Equation GUI, the displayed Equation name is saved for the
current session in the Custom Equations list on the Fitting GUI. The list is
highlighted in the picture of the Fitting GUI below.
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To edit a custom equation, select the equation in the Custom Equations list
and click the Edit button. The Edit Custom Equation GUI appears. The
Edit Custom Equation GUI is identical to the New Custom Equation GUI,
but is pre-populated with the selected equation. After editing an equation
in the Edit Custom Equation GUI, click OK to save it back to the Custom
Equations list for further use in the current session. A button to Copy
and Edit is also available, if you want to save both the original and edited
equations for the current session.

To save custom equations for future sessions, select the File > Save Session
menu item in Curve Fitting Tool.

Example: Legendre Polynomial. This example fits data using several
custom linear equations. The data is generated, and is based on the nuclear
reaction 12C(e,e’α)8Be. The equations use sums of Legendre polynomial terms.

Consider an experiment in which 124 MeV electrons are scattered from 12C
nuclei. In the subsequent reaction, alpha particles are emitted and produce
the residual nuclei 8Be. By analyzing the number of alpha particles emitted as
a function of angle, you can deduce certain information regarding the nuclear
dynamics of 12C. The reaction kinematics are shown below.

The data is collected by placing solid state detectors at values of Θα ranging
from 10o to 240o in 10o increments.

It is sometimes useful to describe a variable expressed as a function of angle
in terms of Legendre polynomials
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where Pn(x) is a Legendre polynomial of degree n, x is cos(Θα), and an are the
coefficients of the fit. Refer to the legendre function for information about
generating Legendre polynomials.

For the alpha-emission data, you can directly associate the coefficients with
the nuclear dynamics by invoking a theoretical model. Additionally, the
theoretical model introduces constraints for the infinite sum shown above.
In particular, by considering the angular momentum of the reaction, a
fourth-degree Legendre polynomial using only even terms should describe the
data effectively.

You can generate Legendre polynomials with Rodrigues’ formula:

The Legendre polynomials up to fourth degree are given below.

Legendre Polynomials up to Fourth Degree

n Pn(x)

0 1

1 x

2 (1/2)(3x2– 1)

3 (1/2)(5x3 – 3x)

4 (1/8)(35x4 – 30x2 + 3)

The first step is to load the 12C alpha-emission data from the file
carbon12alpha.mat, which is provided with the toolbox.

load carbon12alpha
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The workspace now contains two new variables, angle and counts:

• angle is a vector of angles (in radians) ranging from 10o to 240o in 10o

increments.

• counts is a vector of raw alpha particle counts that correspond to the
emission angles in angle.

Import these two variables into Curve Fitting Tool and name the data set
C12Alpha.

The Fit Editor for a custom equation fit type is shown below.

Fit the data using a fourth-degree Legendre polynomial with only even terms:

Because the Legendre polynomials depend only on the predictor variable
and constants, you use the Linear Equations pane on the Create Custom
Equation GUI. This pane is shown below for the model given by y1(x). Note
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that because angle is given in radians, the argument of the Legendre terms is
given by cos(Θα).
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The fit and residuals are shown below. The fit appears to follow the trend of
the data well, while the residuals appear to be randomly distributed and do
not exhibit any systematic behavior.

The numerical fit results are shown below. The 95% confidence bounds
indicate that the coefficients associated with P0(x) and P4(x) are known fairly
accurately, but that the P2(x) coefficient has a relatively large uncertainty.
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To confirm the theoretical argument that the alpha-emission data is best
described by a fourth-degree Legendre polynomial with only even terms, fit
the data using both even and odd terms:

The Linear Equations pane of the Create Custom Equation GUI is shown
below for the model given by y2(x).

The numerical results indicate that the odd Legendre terms do not contribute
significantly to the fit, and the even Legendre terms are essentially unchanged
from the previous fit. This confirms that the initial model choice is the best
one.
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Example: Fourier Series. This example fits the ENSO data using several
custom nonlinear equations. The ENSO data consists of monthly averaged
atmospheric pressure differences between Easter Island and Darwin,
Australia. This difference drives the trade winds in the southern hemisphere.

As shown in “Example: Smoothing Data” on page 2-13, the ENSO data is
clearly periodic, which suggests it can be described by a Fourier series

where ai and bi are the amplitudes, and ci are the periods (cycles) of the data.
The question to be answered in this example is how many cycles exist? As
a first attempt, assume a single cycle and fit the data using one sine term
and one cosine term.

If the fit does not describe the data well, add additional sine and cosine terms
with unique period coefficients until a good fit is obtained.

Because there is an unknown coefficient c1 included as part of the
trigonometric function arguments, the equation is nonlinear. Therefore, you
must specify the equation using the General Equations pane of the Create
Custom Equation GUI.
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This pane is shown below for the equation given by y1(x).

Note that the toolbox includes the Fourier series as a nonlinear library
equation. However, the library equation does not meet the needs of this
example because its terms are defined as fixed multiples of the fundamental
frequency w. Refer to “Fourier Series” on page 2-33 for more information.

The numerical results shown below indicate that the fit does not describe the
data well. In particular, the fitted value for c1 is unreasonably small. Because
the starting points are randomly selected, your initial fit results might differ
from the results shown here.

As you saw in “Example: Smoothing Data” on page 2-13, the data include
a periodic component with a period of about 12 months. However, with c1
unconstrained and with a random starting point, this fit failed to find that
cycle. To assist the fitting procedure, constrain c1 to a value between 10 and
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14. To define constraints for unknown coefficients, use the Fit Options GUI,
which you open by clicking the Fit options button in the Fitting GUI.
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The fit, residuals, and numerical results are shown below.

The fit appears to be reasonable for some of the data points but clearly does
not describe the entire data set very well. As predicted, the numerical results
indicate a cycle of approximately 12 months. However, the residuals show a
systematic periodic distribution indicating that there are additional cycles
that you should include in the fit equation. Therefore, as a second attempt,
add an additional sine and cosine term to y1(x)
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and constrain the upper and lower bounds of c2 to be roughly twice the bounds
used for c1.

The fit, residuals, and numerical results are shown below.

The fit appears to be reasonable for most of the data points. However, the
residuals indicate that you should include another cycle to the fit equation.
Therefore, as a third attempt, add an additional sine and cosine term to y2(x)
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and constrain the lower bound of c3 to be roughly three times the value of c1.

The fit, residuals, and numerical results are shown below.
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The fit is an improvement over the previous two fits, and appears to account
for most of the cycles present in the ENSO data set. The residuals appear
random for most of the data, although a pattern is still visible indicating that
additional cycles may be present, or you can improve the fitted amplitudes.

In conclusion, Fourier analysis of the data reveals three significant cycles.
The annual cycle is the strongest, but cycles with periods of approximately 44
and 22 months are also present. These cycles correspond to El Nino and the
Southern Oscillation (ENSO).

Example: Gaussian with Exponential Background. This example fits
two poorly resolved Gaussian peaks on a decaying exponential background
using a general (nonlinear) custom model. To get started, load the data from
the file gauss3.mat, which is provided with the toolbox.

load gauss3

The workspace now contains two new variables, xpeak and ypeak:

• xpeak is a vector of predictor values.

• ypeak is a vector of response values.

Import these two variables into Curve Fitting Tool and accept the default data
set name ypeak vs. xpeak.

You will fit the data with the following equation

where ai are the peak amplitudes, bi are the peak centroids, and ci are related
to the peak widths. Because there are unknown coefficients included as part
of the exponential function arguments, the equation is nonlinear. Therefore,
you must specify the equation using the General Equations pane of the Create
Custom Equation GUI. This pane is shown below for y(x).
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The data, fit, and numerical fit results are shown below. Clearly, the fit is poor.

Because the starting points are randomly selected, your initial fit results
might differ from the results shown here.

The results include this warning message.
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Fit computation did not converge:
Maximum number of function evaluations exceeded. Increasing
MaxFunEvals (in fit options) may allow for a better fit, or
the current equation may not be a good model for the data.

To improve the fit for this example, specify reasonable starting points for
the coefficients. Deducing the starting points is particularly easy for the
current model because the Gaussian coefficients have a straightforward
interpretation and the exponential background is well defined. Additionally,
as the peak amplitudes and widths cannot be negative, constrain a1, a2, c1,
and c2 to be greater then zero.

To define starting values and constraints for unknown coefficients, use the
Fit Options GUI, which you open by clicking the Fit options button. The
starting values and constraints are shown below.
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The data, fit, residuals, and numerical results are shown below.

Specifying Fit Options

• “Introduction” on page 2-60

• “Fitting Method and Algorithm” on page 2-60
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• “Finite Differencing Parameters” on page 2-61

• “Fit Convergence Criteria” on page 2-62

• “Coefficient Parameters” on page 2-62

Introduction. You specify fit options with the Fit Options GUI. The fit
options for the single-term exponential are shown below. The coefficient
starting values and constraints are for the census data.

The available GUI options depend on whether you are fitting your data using
a linear model, a nonlinear model, or a nonparametric fit type. All the options
described below are available for nonlinear models. Method, Robust, and
coefficient constraints (Lower and Upper) are available for linear models.
Interpolants and smoothing splines include Method, but no configurable
options.

Fitting Method and Algorithm.

• Method — The fitting method.
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The method is automatically selected based on the library or custom model
you use. For linear models, the method is LinearLeastSquares. For
nonlinear models, the method is NonlinearLeastSquares.

• Robust — Specify whether to use the robust least-squares fitting method.
The values are

- Off — Do not use robust fitting (default).

- On — Fit with default robust method (bisquare weights).

- LAR — Fit by minimizing the least absolute residuals (LAR).

- Bisquare — Fit by minimizing the summed square of the residuals,
and down-weight outliers using bisquare weights. In most cases, this is
the best choice for robust fitting.

• Algorithm — Algorithm used for the fitting procedure:

- Trust-Region — This is the default algorithm and must be used if you
specify coefficient constraints.

- Levenberg-Marquardt — If the trust-region algorithm does not
produce a reasonable fit, and you do not have coefficient constraints, you
should try the Levenberg-Marquardt algorithm.

- Gauss-Newton — This algorithm is included for pedagogical reasons
and should be the last choice for most models and data sets.

Finite Differencing Parameters.

• DiffMinChange — Minimum change in coefficients for finite difference
Jacobians. The default value is 10-8.

• DiffMaxChange — Maximum change in coefficients for finite difference
Jacobians. The default value is 0.1.

Note that DiffMinChange and DiffMaxChange apply to

• Any nonlinear custom equation — that is, a nonlinear equation that you
write.

• Some, but not all, of the nonlinear equations provided with Curve Fitting
Toolbox software.

2-61



2 Interactive Curve Fitting

However, DiffMinChange and DiffMaxChange do not apply to any linear
equations.

Fit Convergence Criteria.

• MaxFunEvals — Maximum number of function (model) evaluations
allowed. The default value is 600.

• MaxIter — Maximum number of fit iterations allowed. The default value
is 400.

• TolFun — Termination tolerance used on stopping conditions involving the
function (model) value. The default value is 10-6.

• TolX — Termination tolerance used on stopping conditions involving the
coefficients. The default value is 10-6.

Coefficient Parameters.

• Unknowns — Symbols for the unknown coefficients to be fitted.

• StartPoint — The coefficient starting values. The default values depend
on the model. For rational, Weibull, and custom models, default values are
randomly selected within the range [0,1]. For all other nonlinear library
models, the starting values depend on the data set and are calculated
heuristically.

• Lower — Lower bounds on the fitted coefficients. The bounds are used
only with the trust region fitting algorithm. The default lower bounds for
most library models are -Inf, which indicates that the coefficients are
unconstrained. However, a few models have finite default lower bounds.
For example, Gaussians have the width parameter constrained so that it
cannot be less than 0.

• Upper — Upper bounds on the fitted coefficients. The bounds are used
only with the trust region fitting algorithm. The default upper bounds
for all library models are Inf, which indicates that the coefficients are
unconstrained.

For more information about these fit options, refer to the Optimization
Toolbox™ documentation.
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The default coefficient starting points and constraints for library and custom
models are given below. If the starting points are optimized, then they are
calculated heuristically based on the current data set. Random starting
points are defined on the interval [0,1] and linear models do not require
starting points.

If a model does not have constraints, the coefficients have neither a lower
bound nor an upper bound. You can override the default starting points and
constraints by providing your own values using the Fit Options GUI.

Default Starting Points and Constraints

Model Starting Points Constraints

Custom linear N/A None

Custom nonlinear Random None

Exponentials Optimized None

Fourier series Optimized None

Gaussians Optimized ci > 0

Polynomials N/A None

Power series Optimized None

Rationals Random None

Sum of sines Optimized bi > 0

Weibull Random a, b > 0

Note that the sum of sines and Fourier series models are particularly sensitive
to starting points, and the optimized values might be accurate for only a few
terms in the associated equations. For an example that overrides the default
starting values for the sum of sines model, refer to .

Example: Rational Fit
This example fits measured data using a rational model. The data describes
the coefficient of thermal expansion for copper as a function of temperature
in degrees kelvin.
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To get started, load the thermal expansion data from the file hahn1.mat,
which is provided with the toolbox.

load hahn1

The workspace now contains two new variables, temp and thermex:

• temp is a vector of temperatures in degrees kelvin.

• thermex is a vector of thermal expansion coefficients for copper.

Import these two variables into Curve Fitting Tool and name the data set
CuThermEx.

For this data set, you will find the rational equation that produces the best fit.
As described in “Library Models” on page 2-32, rational models are defined as
a ratio of polynomials

where n is the degree of the numerator polynomial and m is the degree of the
denominator polynomial. Note that the rational equations are not associated
with physical parameters of the data. Instead, they provide a simple and
flexible empirical model that you can use for interpolation and extrapolation.

2-64



Fitting Data

As you can see by examining the shape of the data, a reasonable initial choice
for the rational model is quadratic/quadratic. The Fitting GUI configured for
this equation is shown below.
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The data, fit, and residuals are shown below.
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The fit clearly misses the data for the smallest and largest predictor values.
Additionally, the residuals show a strong pattern throughout the entire data
set indicating that a better fit is possible.
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For the next fit, try a cubic/cubic equation. The data, fit, and residuals are
shown below.

The numerical results shown below indicate that the fit did not converge.

2-67



2 Interactive Curve Fitting

Although the message in the Results window indicates that you might
improve the fit if you increase the maximum number of iterations, a better
choice at this stage of the fitting process is to use a different rational equation
because the current fit contains several discontinuities. These discontinuities
are due to the function blowing up at predictor values that correspond to
the zeros of the denominator.

As the next try, fit the data using a cubic/quadratic equation. The data, fit,
and residuals are shown below.

The fit is well behaved over the entire data range, and the residuals are
randomly scattered about zero. Therefore, you can confidently use this fit
for further analysis.
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Example: Robust Fitting
This example fits data that is assumed to contain one outlier. The data
consists of the 2000 United States presidential election results for the state of
Florida. The fit model is a first degree polynomial and the fit method is robust
linear least squares with bisquare weights.

In the 2000 presidential election, many residents of Palm Beach County,
Florida, complained that the design of the election ballot was confusing, which
they claim led them to vote for the Reform candidate Pat Buchanan instead
of the Democratic candidate Al Gore. The so-called “butterfly ballot” was
used only in Palm Beach County and only for the election-day ballots for the
presidential race. As you will see, the number of Buchanan votes for Palm
Beach is far removed from the bulk of data, which suggests that the data
point should be treated as an outlier.

To get started, load the Florida election result data from the file
flvote2k.mat, which is provided with the toolbox.

load flvote2k

The workspace now contains these three new variables:

• buchanan is a vector of votes for the Reform Party candidate Pat Buchanan.

• bush is a vector of votes for the Republican Party candidate George Bush.

• gore is a vector of votes for the Democratic Party candidate Al Gore.

Each variable contains 68 elements, which correspond to the 67 Florida
counties plus the absentee ballots. The names of the counties are given in
the variable counties. From these variables, create two data sets with the
Buchanan votes as the response data: buchanan vs. bush and buchanan
vs. gore.

For this example, assume that the relationship between the response and
predictor data is linear with an offset of zero.

buchanan votes = (bush votes)(m1)

buchanan votes = (gore votes)(m2)
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m1 is the number of Bush votes expected for each Buchanan vote, and m2 is
the number of Gore votes expected for each Buchanan vote.

To create a first-degree polynomial equation with zero offset, you must create
a custom linear equation. You create a custom equation using the Fitting GUI
by selecting Custom Equations from the Type of fit list, and then clicking
the New Equation button.

The Linear Equations pane of the Create Custom Equation GUI is shown
below.

Before fitting, you should exclude the data point associated with the absentee
ballots from each data set because these voters did not use the butterfly ballot.
As described in “Marking Outliers” on page 2-19, you can exclude individual
data points from a fit either graphically or numerically using the Exclude
GUI. For this example, you should exclude the data numerically. The index of
the absentee ballot data is given by

ind = find(strcmp(counties,'Absentee Ballots'))
ind =

68
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The Exclude GUI is shown below.

The exclusion rule is named AbsenteeVotes. You use the Fitting GUI to
associate an exclusion rule with the data set to be fit.

For each data set, perform a robust fit with bisquare weights using the
FlaElection equation defined above. For comparison purposes, also perform
a regular linear least-squares fit.

You can identify the Palm Beach County data in the scatter plot by using the
data tips feature, and knowing the index number of the data point.

ind = find(strcmp(counties,'Palm Beach'))
ind =

50
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The Fit Editor and the Fit Options GUI are shown below for a robust fit.

The data, robust and regular least-squares fits, and residuals for the buchanan
vs. bush data set are shown below.

2-72



Fitting Data

The graphical results show that the linear model is reasonable for the majority
of data points, and the residuals appear to be randomly scattered around
zero. However, two residuals stand out. The largest residual corresponds to
Palm Beach County. The other residual is at the largest predictor value, and
corresponds to Miami/Dade County.

The numerical results are shown below. The inverse slope of the robust fit
indicates that Buchanan should receive one vote for every 197.4 Bush votes.

The data, robust and regular least-squares fits, and residuals for the buchanan
vs. gore data set are shown below.
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Again, the graphical results show that the linear model is reasonable for the
majority of data points, and the residuals appear to be randomly scattered
around zero. However, three residuals stand out. The largest residual
corresponds to Palm Beach County. The other residuals are at the two largest
predictor values, and correspond to Miami/Dade County and Broward County.

The numerical results are shown below. The inverse slope of the robust fit
indicates that Buchanan should receive one vote for every 189.3 Gore votes.

Using the fitted slope value, you can determine the expected number of
votes that Buchanan should have received for each fit. For the Buchanan
versus Bush data, you evaluate the fit at a predictor value of 152,951. For
the Buchanan versus Gore data, you evaluate the fit at a predictor value of
269,732. These results are shown below for both data sets and both fits.

Expected Buchanan Votes in Palm Beach County

Data Set Fit
Expected Buchanan
Votes

Buchanan vs. Bush Ordinary least squares 814

Robust least squares 775

Buchanan vs. Gore Ordinary least squares 1246

Robust least squares 1425

The robust results for the Buchanan versus Bush data suggest that Buchanan
received 3411 – 775 = 2636 excess votes, while robust results for the Buchanan
versus Gore data suggest that Buchanan received 3411 – 1425 = 1986 excess
votes.

The margin of victory for George Bush is given by

margin = sum(bush)-sum(gore)
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margin =

537

Therefore, the voter intention comes into play because in both cases, the
margin of victory is less than the excess Buchanan votes.

In conclusion, the analysis of the 2000 United States presidential election
results for the state of Florida suggests that the Reform Party candidate
received an excess number of votes in Palm Beach County, and that this excess
number was a crucial factor in determining the election outcome. However,
additional analysis is required before a final conclusion can be made.

Nonparametric Fitting

• “Introduction” on page 2-75

• “Example: Nonparametric Fitting” on page 2-75

Introduction
In some cases, you are not concerned about extracting or interpreting fitted
parameters. Instead, you might simply want to draw a smooth curve through
your data. Fitting of this type is called nonparametric fitting. The Curve
Fitting Toolbox software supports these nonparametric fitting methods:

• Interpolants — Estimate values that lie between known data points.

• Smoothing spline — Create a smooth curve through the data. You adjust
the level of smoothness by varying a parameter that changes the curve from
a least-squares straight-line approximation to a cubic spline interpolant.

For more information about interpolation, refer to “Polynomials” and the
interp1 function in the MATLAB documentation.

Example: Nonparametric Fitting
This example fits the following data using a cubic spline interpolant and
several smoothing splines.

x = (4*pi)*[0 1 rand(1,25)];
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y = sin(x) + .2*(rand(size(x))-.5);

As shown below, you can fit the data with a cubic spline interpolant by
selecting Interpolant from the Type of fit list.

The results shown below indicate that goodness-of-fit statistics are not defined
for interpolants.

A cubic spline interpolation is defined as a piecewise polynomial that results
in a structure of coefficients. The number of “pieces” in the structure is one
less than the number of fitted data points, and the number of coefficients for
each piece is four because the polynomial degree is three. The toolbox does
not allow you to access the structure of coefficients.

As shown below, you can fit the data with a smoothing spline by selecting
Smoothing Spline in the Type of fit list.
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The level of smoothness is given by the Smoothing Parameter. The default
smoothing parameter value depends on the data set, and is automatically
calculated by the toolbox after you click the Apply button.

For this data set, the default smoothing parameter is close to 1, indicating
that the smoothing spline is nearly cubic and comes very close to passing
through each data point. Create a fit for the default smoothing parameter and
name it Smooth1. If you do not like the level of smoothing produced by the
default smoothing parameter, you can specify any value between 0 and 1. A
value of 0 produces a linear polynomial fit, while a value of 1 produces a
piecewise cubic polynomial fit that passes through all the data points. For
comparison purposes, create another smoothing spline fit using a smoothing
parameter of 0.5 and name the fit Smooth2.

The numerical results for the smoothing spline fit Smooth1 are shown below.

The data and fits are shown below. The default abscissa scale was increased
to show the fit behavior beyond the data limits. You change the axes limits
with Tools > Axes Limit Control menu item.
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Note that the default smoothing parameter produces a curve that is smoother
than the interpolant, but is a good fit to the data. In this case, decreasing
the smoothing parameter from the default value produces a curve that is
smoother still, but is not a good fit to the data. As the smoothing parameter
increases beyond the default value, the associated curve approaches the cubic
spline interpolant.

2-78



3

Programmatic Curve
Fitting

Curve Fitting Objects and Methods
(p. 3-2)

Objects for encapsulating fit results

Interactive Code Generation (p. 3-23) Generating M-file programs



3 Programmatic Curve Fitting

Curve Fitting Objects and Methods

In this section...

“Overview” on page 3-2

“Curve Fitting Objects” on page 3-3

“Curve Fitting Methods” on page 3-4

“Workflow for Object-Oriented Fitting” on page 3-7

“Examples” on page 3-8

This section describes how to use Curve Fitting Toolbox™ functions to write
object-oriented programs for curve fitting applications.

Overview
In MATLAB® programming, all workspace variables are objects of a
particular class. Familiar examples of MATLAB classes are double, char,
and function_handle. You can also create custom MATLAB classes, using
object-oriented programming.

Methods are functions that operate exclusively on objects of a particular
class. Data types package together objects and methods so that the methods
operate exclusively on objects of their own type, and not on objects of other
types. A clearly defined encapsulation of objects and methods is the goal of
object-oriented programming.

Curve Fitting Toolbox software provides you with two new MATLAB data
types for performing curve fitting:

• fittype — Objects allow you to encapsulate information describing a
parametric model for your data. Methods allow you to access and modify
that information.

• cfit — A subtype of fittype. Objects capture information from a
particular fit by assigning values to coefficients, confidence intervals, fit
statistics, etc. Methods allow you to post-process the fit through plotting,
extrapolation, integration, etc.
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Because cfit is a subtype of fittype, cfit inherits all fittype methods.
In other words, you can apply fittype methods to both fittype and cfit
objects, but cfit methods are used exclusively with cfit objects.

As an example, the fittype method islinear, which determines if a model
is linear or nonlinear, would apply equally well before or after a fit; that is,
to both fittype and cfit objects. On the other hand, the cfit methods
coeffvalues and confint, which, respectively, return fit coefficients and their
confidence intervals, would make no sense if applied to a general fittype
object which describes a parametric model with undetermined coefficients.

Curve Fitting Objects
Curve fitting objects have properties that depend on their type, and also on
the particulars of the model or the fit that they encapsulate. For example, the
following code uses the constructor methods for the two curve fitting types
to create a fittype object f and a cfit object c:

f = fittype('a*x^2+b*exp(n*x)')
f =

General model:
f(a,b,n,x) = a*x^2+b*exp(n*x)

c = cfit(f,1,10.3,-1e2)
c =

General model:
c(x) = a*x^2+b*exp(n*x)
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Coefficients:
a = 1
b = 10.3
n = -100

Note that the display method for fittype objects returns only basic
information, piecing together outputs from formula and indepnames.

cfit and fittype objects are evaluated at predictor values x using feval.
You can call feval indirectly using the following functional syntax:

y = cfun(x) % cfit objects;
y = ffun(coef1,coef2,...,x) % fittype objects;

Curve Fitting Methods
Curve fitting methods allow you to create, access, and modify curve fitting
objects. They also allow you, through methods like plot and integrate,
to perform operations that uniformly process the entirety of information
encapsulated in a curve fitting object.

The methods listed in the following table are available for all fittype objects,
including cfit objects.

Fit Type Method Description

argnames Get input argument names

category Get fit category

coeffnames Get coefficient names

dependnames Get dependent variable name

feval Evaluate model at specified predictors

fittype Construct fittype object

formula Get formula string

indepnames Get independent variable name

islinear Determine if model is linear

numargs Get number of input arguments
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Fit Type Method Description

numcoeffs Get number of coefficients

probnames Get problem-dependent parameter names

type Get name of model

The methods listed in the following table are available exclusively for cfit
objects.

Curve Fit Method Description

cfit Construct cfit object

coeffvalues Get coefficient values

confint Get confidence intervals for fit coefficients

differentiate Differentiate fit

integrate Integrate fit

plot Plot fit

predint Get prediction intervals

probvalues Get problem-dependent parameter values

A complete list of methods for a curve fitting object can be obtained with the
MATLAB methods command. For example,

f = fittype('a*x^2+b*exp(n*x)');
methods(f)

Methods for class fittype:

argnames fitoptions nonlinearcoeffs
cat fittype numargs
category formula numcoeffs
char getcoeffmatrix prettyname
clearhandles horzcat probnames
coeffnames indepnames saveobj
constants integexpr setoptions
dependnames isempty startpt
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derivexpr islinear subsasgn
disp linearexprs subsref
display linearterms symvar
exist loadobj type
feval nargin vertcat
fevalexpr nargout

Note that some of the methods listed by methods do not appear in the
tables above, and do not have reference pages in the Curve Fitting Toolbox
documentation. These additional methods are generally low-level operations
used by Curve Fitting Tool, and not of general interest when writing curve
fitting applications.

There are no global accessor methods, comparable to getfield and setfield,
available for fittype objects. Access is limited to the methods listed above.
This is because many of the properties of fittype objects are derived from
other properties, for which you do have access. For example,

f = fittype('a*cos( b*x-c )')
f =

General model:
f(a,b,c,x) = a*cos( b*x-c )

formula(f)
ans =
a*cos( b*x-c )

argnames(f)
ans =

'a'
'b'
'c'
'x'

You construct the fittype object f by giving the formula, so you do have
write access to that basic property of the object. You have read access to that
property through the formula method. You also have read access to the
argument names of the object, through the argnames method. You don’t,
however, have direct write access to the argument names, which are derived
from the formula. If you want to set the argument names, set the formula.
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Workflow for Object-Oriented Fitting
Curve Fitting Toolbox software provides a variety of methods for data analysis
and modeling. In application, these methods are applied in a systematic
manner, which can be represented in a standard workflow diagram such as
the one below.

A typical analysis using curve fitting methods proceeds as follows:

1 Import your data into the MATLAB workspace using the load command
(if your data has previously been stored in MATLAB variables) or any of
the more specialized MATLAB functions for reading data from particular
file types.

2 If your data is noisy, you might want to smooth it using the smooth
function. Smoothing is used to identify major trends in the data that can
assist you in choosing an appropriate family of parametric models. If a
parametric model is not evident or appropriate, smoothing can be an end in
itself, providing a nonparametric fit of the data.
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Note Smoothing estimates the center of the distribution of the response
at each predictor. It invalidates the assumption that errors in the data
are independent, and so also invalidates the methods used to compute
confidence and prediction intervals. Accordingly, once a parametric model
is identified through smoothing, the original data should be passed to the
fit function.

3 A parametric model for the data—either a Curve Fitting Toolbox library
model or a custom model that you define—is specified as a fittype
object using the fittype function. Library models are displayed with the
cflibhelp function.

4 A fit options structure can be created for the fit using the fitoptions
function. Fit options specify things like weights for the data, fitting
methods, and low-level options for the fitting algorithm.

5 An exclusion rule can be created for the fit using the excludedata function.
Exclusion rules indicate which data values will be treated as outliers and
excluded from the fit.

6 Data, a fittype object, and (optionally) a fit options structure and an
exclusion rule are all passed to the fit function to perform the fit. The fit
function returns a cfit object that encapsulates the computed coefficients
and the fit statistics.

7 cfit objects returned by the fit function can then be passed to a variety of
postprocessing functions, such as feval, differentiate, integrate, plot,
coeffvalues, probvalues, confint, and predint.

Examples
The following examples illustrate the standard workflow outlined in
“Workflow for Object-Oriented Fitting” on page 3-7. Further examples of
programmatic fitting can be found in the reference pages for individual curve
fitting methods.

• “Example: Smoothing Data I” on page 3-9

• “Example: Smoothing Data II” on page 3-10

3-8



Curve Fitting Objects and Methods

• “Example: Excluding Data” on page 3-11

• “Example: Specifying Fit Options” on page 3-14

• “Example: Robust Fitting” on page 3-15

• “Example: Differentiating and Integrating a Fit” on page 3-17

• “Example: Prediction Intervals” on page 3-21

Example: Smoothing Data I
Load the data in count.dat:

load count.dat

The 24-by-3 array count contains traffic counts at three intersections for
each hour of the day.

First, use a moving average filter with a 5-hour span to smooth all of the
data at once (by linear index) :

c = smooth(count(:));
C1 = reshape(c,24,3);

Plot the original data and the smoothed data:

subplot(3,1,1)
plot(count,':');
hold on
plot(C1,'-');
title('Smooth C1 (All Data)')

Second, use the same filter to smooth each column of the data separately:

C2 = zeros(24,3);
for I = 1:3,

C2(:,I) = smooth(count(:,I));
end

Again, plot the original data and the smoothed data:

subplot(3,1,2)
plot(count,':');
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hold on
plot(C2,'-');
title('Smooth C2 (Each Column)')

Plot the difference between the two smoothed data sets:

subplot(3,1,3)
plot(C2 - C1,'o-')
title('Difference C2 - C1')

Note the additional end effects from the 3-column smooth.

Example: Smoothing Data II
Create noisy data with outliers:

x = 15*rand(150,1);
y = sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;

Smooth the data using the loess and rloess methods with a span of 10%:

yy1 = smooth(x,y,0.1,'loess');
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yy2 = smooth(x,y,0.1,'rloess');

Plot original data and the smoothed data.

[xx,ind] = sort(x);
subplot(2,1,1)
plot(xx,y(ind),'b.',xx,yy1(ind),'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''loess''',...

'Location','NW')
subplot(2,1,2)
plot(xx,y(ind),'b.',xx,yy2(ind),'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''rloess''',...

'Location','NW')

Note that the outliers have less influence on the robust method.

Example: Excluding Data
Load the vote counts and county names for the state of Florida from the 2000
U.S. presidential election:
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load flvote2k

Use the vote counts for the two major party candidates, Bush and Gore, as
predictors for the vote counts for third-party candidate Buchanan, and plot
the scatters:

plot(bush,buchanan,'rs')
hold on
plot(gore,buchanan,'bo')
legend('Bush data','Gore data')

Assume a model where a fixed proportion of Bush or Gore voters choose to
vote for Buchanan:

f = fittype({'x'})
f =

Linear model:
f(a,x) = a*x

Exclude the data from absentee voters, who did not use the controversial
“butterfly” ballot:
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absentee = find(strcmp(counties,'Absentee Ballots'));
nobutterfly = excludedata(bush,buchanan,'indices',absentee);

Perform a bisquare weights robust fit of the model to the two data sets,
excluding absentee voters:

bushfit = fit(bush,buchanan,f,...
'Exclude',nobutterfly,'Robust','on');

gorefit = fit(gore,buchanan,f,...
'Exclude',nobutterfly,'Robust','on');

Robust fits give outliers a low weight, so large residuals from a robust fit
can be used to identify the outliers:

figure
plot(bushfit,bush,buchanan,'rs','residuals')
hold on
plot(gorefit,gore,buchanan,'bo','residuals')

The residuals in the plot above can be computed as follows:

bushres = buchanan - feval(bushfit,bush);
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goreres = buchanan - feval(gorefit,gore);

Large residuals can be identified as those outside the range [-500 500]:

bushoutliers = excludedata(bush,bushres,'range',[-500 500]);
goreoutliers = excludedata(gore,goreres,'range',[-500 500]);

The outliers for the two data sets correspond to the following counties:

counties(bushoutliers)
ans =

'Miami-Dade'
'Palm Beach'

counties(goreoutliers)
ans =

'Broward'
'Miami-Dade'
'Palm Beach'

Miami-Dade and Broward counties correspond to the largest predictor values.
Palm Beach county, the only county in the state to use the “butterfly” ballot,
corresponds to the largest residual values.

Example: Specifying Fit Options
Create the default fit options structure and set the option to center and scale
the data before fitting:

options = fitoptions;
options.Normal = 'on';
options
options =

Normalize: 'on'
Exclude: [1x0 double]
Weights: [1x0 double]
Method: 'None'

Modifying the default fit options structure is useful when you want to set the
Normalize, Exclude, or Weights fields, and then fit your data using the same
options with different fitting methods. For example:
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load census
f1 = fit(cdate,pop,'poly3',options);
f2 = fit(cdate,pop,'exp1',options);
f3 = fit(cdate,pop,'cubicsp',options);

Data-dependent fit options are returned in the third output argument of the
fit function. For example:

[f,gof,out] = fit(cdate,pop,'smooth');
smoothparam = out.p
smoothparam =

0.0089

The default smoothing parameter can be modified for a new fit:

options = fitoptions('Method','Smooth','SmoothingParam',0.0098);
[f,gof,out] = fit(cdate,pop,'smooth',options);

Example: Robust Fitting
Create a baseline sinusoidal signal:

xdata = (0:0.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal with non-constant variance:

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));

% Salt-and-pepper noise
spnoise = zeros(size(y0));
p = randperm(length(y0));
sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnoise + spnoise;

Fit the noisy data with a baseline sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);
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Identify “outliers” as points at a distance greater than 1.5 standard deviations
from the baseline model, and refit the data with the outliers excluded:

fdata = feval(fit1,xdata);
I = abs(fdata - ydata) > 1.5*std(ydata);
outliers = excludedata(xdata,ydata,'indices',I);

fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],'Exclude',outliers);

Compare the effect of excluding the outliers with the effect of giving them
lower bisquare weight in a robust fit:

fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');

Plot the data, the outliers, and the results of the fits:

plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*')
hold on
plot(fit2,'c--')
plot(fit3,'b:')
xlim([0 2*pi])

3-16



Curve Fitting Objects and Methods

Plot the residuals for the two fits considering outliers:

figure
plot(fit2,xdata,ydata,'co','residuals')
hold on
plot(fit3,xdata,ydata,'bx','residuals')

Example: Differentiating and Integrating a Fit
Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent noise
ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);
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Find the derivatives of the fit at the predictors:

[d1,d2] = differentiate(fit1,xdata);

Plot the data, the fit, and the derivatives:

subplot(3,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)
plot(xdata,d1,'m') % double plot method
grid on
legend('1st derivative')
subplot(3,1,3)
plot(xdata,d2,'c') % double plot method
grid on
legend('2nd derivative')
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Note that derivatives can also be computed and plotted directly with the
cfit plot method, as follows:

plot(fit1,xdata,ydata,{'fit','deriv1','deriv2'})

The plot method, however, does not return data on the derivatives.

Find the integral of the fit at the predictors:
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int = integrate(fit1,xdata,0);

Plot the data, the fit, and the integral:

subplot(2,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(2,1,2)
plot(xdata,int,'m') % double plot method
grid on
legend('integral')

Note that integrals can also be computed and plotted directly with the cfit
plot method, as follows:

plot(fit1,xdata,ydata,{'fit','integral'})

The plot method, however, does not return data on the integral.
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Example: Prediction Intervals
Generate data with an exponential trend:

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit the data using a single-term exponential:

fitresult = fit(x,y,'exp1');

Compute prediction intervals:

p11 = predint(fitresult,x,0.95,'observation','off');
p12 = predint(fitresult,x,0.95,'observation','on');
p21 = predint(fitresult,x,0.95,'functional','off');
p22 = predint(fitresult,x,0.95,'functional','on');

Plot the data, fit, and prediction intervals:

subplot(2,2,1)
plot(fitresult,x,y), hold on, plot(x,p11,'m--'), xlim([0 5])
title('Nonsimultaneous observation bounds','Color','m')
subplot(2,2,2)
plot(fitresult,x,y), hold on, plot(x,p12,'m--'), xlim([0 5])
title('Simultaneous observation bounds','Color','m')
subplot(2,2,3)
plot(fitresult,x,y), hold on, plot(x,p21,'m--'), xlim([0 5])
title('Nonsimultaneous functional bounds','Color','m')
subplot(2,2,4)
plot(fitresult,x,y), hold on, plot(x,p22,'m--'), xlim([0 5])
title('Simultaneous functional bounds','Color','m')
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Interactive Code Generation

In this section...

“Overview” on page 3-23

“The Generated M-file” on page 3-24

“Running the Generated M-file” on page 3-26

“Components of the Generated M-File” on page 3-28

“Modifying the Code” on page 3-31

This section describes how to generate and use MATLAB® code from an
interactive session in Curve Fitting Tool.

Overview
One way to quickly assemble curve fitting objects and methods into useful
programs is to generate an M-file from a session in Curve Fitting Tool. In this
way, interactive analysis of a single data set is transformed into a reusable
function for batch processing of multiple data sets. The generated M-file can
be used without modification, or it can be edited and customized as needed.

To generate an M-file from a session in Curve Fitting Tool, select the menu
item File > Generate M-file.

The M-file captures the following information from Curve Fitting Tool:

• Names of variables, fits, and residuals

• Fit options, such as whether the data should be normalized, initial values
for the coefficients, and the fitting method

• Curve fitting objects and methods used to create the fit

You can recreate your Curve Fitting Tool session by calling the M-file from
the command line with your original data as input arguments. You can also
call the M-file with new data, applying the assembled curve fitting methods
to re-compute curve fitting objects.
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The Generated M-file
M-files generated from Curve Fitting Tool are constructed from building-block
components of code, which you can analyze, modify, and reuse in your own
M-files. The components of the generated M-file provide good examples of
how to assemble curve fitting objects and methods to perform basic tasks.
The larger M-file shows you how to assemble those tasks into a complete
analysis of your data.

For example, the following M-file was generated from a session in Curve
Fitting Tool that imported the data from census.mat and fit a custom
nonlinear model of the form y = a(x–b)3:

function myfit(cdate,pop)
%MYFIT Create plot of datasets and fits
% MYFIT(CDATE,POP)
% Creates a plot, similar to the plot in the main curve fitting
% window, using the data that you provide as input. You can
% apply this function to the same data you used with cftool
% or with different data. You may want to edit the function to
% customize the code and this help message.
%
% Number of datasets: 1
% Number of fits: 1

% Data from dataset "pop vs. cdate":
% X = cdate:
% Y = pop:
% Unweighted
%
% This function was automatically generated on 11-Sep-2007 01:07:11

% Set up figure to receive datasets and fits
f_ = clf;
figure(f_);
set(f_,'Units','Pixels','Position',[439.6 193.6 814.4 576.8]);
legh_ = []; legt_ = {}; % handles and text for legend
xlim_ = [Inf -Inf]; % limits of x axis
ax_ = axes;
set(ax_,'Units','normalized','OuterPosition',[0 0 1 1]);
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set(ax_,'Box','on');
axes(ax_); hold on;

% --- Plot data originally in dataset "pop vs. cdate"
cdate = cdate(:);
pop = pop(:);
h_ = line(cdate,pop,'Parent',ax_,'Color',[0.333333 0 0.666667],...

'LineStyle','none', 'LineWidth',1,...
'Marker','.', 'MarkerSize',12);

xlim_(1) = min(xlim_(1),min(cdate));
xlim_(2) = max(xlim_(2),max(cdate));
legh_(end+1) = h_;
legt_{end+1} = 'pop vs. cdate';

% Nudge axis limits beyond data limits
if all(isfinite(xlim_))

xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_);
set(ax_,'XLim',xlim_)

else
set(ax_, 'XLim',[1788, 1992]);

end

% --- Create fit "fit 1"
ok_ = isfinite(cdate) & isfinite(pop);
if ~all( ok_ )

warning( 'GenerateMFile:IgnoringNansAndInfs', ...
'Ignoring NaNs and Infs in data' );

end
st_ = [0.51510504095942344 0.35210694524343056 ];
ft_ = fittype('a*(x-b)^3',...

'dependent',{'y'},'independent',{'x'},...
'coefficients',{'a', 'b'});

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft_,'Startpoint',st_);

% Or use coefficients from the original fit:
if 0
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cv_ = { 1.3594203554767276e-005, 1724.6959436137356};
cf_ = cfit(ft_,cv_{:});

end

% Plot this fit
h_ = plot(cf_,'fit',0.95);
legend off; % turn off legend from plot method call
set(h_(1),'Color',[1 0 0],...

'LineStyle','-', 'LineWidth',2,...
'Marker','none', 'MarkerSize',6);

legh_(end+1) = h_(1);
legt_{end+1} = 'fit 1';

% Done plotting data and fits. Now finish up loose ends.
hold off;
leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};
h_ = legend(ax_,legh_,legt_,leginfo_{:}); % create legend
set(h_,'Interpreter','none');
xlabel(ax_,''); % remove x label
ylabel(ax_,''); % remove y label

A quick look through the code shows that it has automatically assembled
for you many of the Curve Fitting Toolbox™ curve fitting methods, such as
fitoptions, fittype, fit, and plot.

Running the Generated M-file
To run the generated M-file without modification, and reproduce your original
Curve Fitting Tool session, type:

load census
myfit(cdate,pop)
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To run the M-file without modification on new data, pass the new data to the
function as input arguments:

newpop = pop + 50*randn(size(pop));
myfit(cdate,newpop)
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The M-file recomputes the cfit object for the fit and displays the new data
with the new fit.

Components of the Generated M-File
It is useful to take a closer look at the components of the generated M-file, to
understand the role that each component plays in the overall visualization
and analysis of the data. This allows you to change the M-file, and customize
it to your needs.

The M-file begins with a function declaration:

function myfit(cdate,pop)

The function accepts predictor and response data for a predefined fit type.
The inputs are called cdate and pop because those were the predictor and
response variables used in Curve Fitting Tool session that produced the file.
If you like, you can find and replace the input names here and elsewhere in
the file to indicate a more generic application of the fit.

Note that the file, as generated, returns no outputs. It simply applies the fit
to the input data and displays the results.

The next component of the M-file, after the help information, is the following:

% Set up figure to receive datasets and fits
f_ = clf;
figure(f_);
set(f_,'Units','Pixels','Position',[439.6 193.6 814.4 576.8]);
legh_ = []; legt_ = {}; % handles and text for legend
xlim_ = [Inf -Inf]; % limits of x axis
ax_ = axes;
set(ax_,'Units','normalized','OuterPosition',[0 0 1 1]);
set(ax_,'Box','on');
axes(ax_); hold on;

These are Handle Graphics® methods, applied to Handle Graphics objects
that encapsulate information on the display of the figure window, the legend,
and the axes. This component of the M-file creates a figure for plotting that
mimics the Plotting GUI in Curve Fitting Tool. Note that at the end of this
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component hold is toggled on. This allows the input data and the fit to be
plotted together on the axes.

The next component of the M-file plots the input data, using Handle Graphics
methods to set properties of the line object, the axes, and the legend that
mimic the plot in Curve Fitting Tool:

% --- Plot data originally in dataset "pop vs. cdate"
cdate = cdate(:);
pop = pop(:);
h_ = line(cdate,pop,'Parent',ax_,'Color',[0.333333 0 0.666667],...

'LineStyle','none', 'LineWidth',1,...
'Marker','.', 'MarkerSize',12);

xlim_(1) = min(xlim_(1),min(cdate));
xlim_(2) = max(xlim_(2),max(cdate));
legh_(end+1) = h_;
legt_{end+1} = 'pop vs. cdate';

The next component “nudges” the x-axis limits, leaving a space of 1% of the x
data range between the data and the vertical axes. This gives a tight plot,
while preventing data from being plotted directly onto the vertical axes, where
it would be difficult to see.

% Nudge axis limits beyond data limits
if all(isfinite(xlim_))

xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_);
set(ax_,'XLim',xlim_)

else
set(ax_, 'XLim',[1788, 1992]);

end

After all of the preliminaries, the M-file gets down to the business of fitting
the data. The next component of the M-file uses fitoptions and fittype to
create a fit options structure fo_ and a fittype object ft_ that encapsulate,
respectively, information on the fitting method and the model. The inputs to
fitoptions and fittype are read from the Fitting GUI in Curve Fitting Tool.

% --- Create fit "fit 1"
ok_ = isfinite(cdate) & isfinite(pop);
if ~all( ok_ )

warning( 'GenerateMFile:IgnoringNansAndInfs', ...
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'Ignoring NaNs and Infs in data' );
end
st_ = [0.51510504095942344 0.35210694524343056 ];
ft_ = fittype('a*(x-b)^3',...

'dependent',{'y'},'independent',{'x'},...
'coefficients',{'a', 'b'});

The fit method is then called to fit the predefined fit type to the input data.
Note that NaNs are removed from the data before the fit, using the logical
vector ok_ defined in the previous component.

% Fit this model using new data
cf_ = fit(cdate(ok_),pop(ok_),ft_,'Startpoint',st_);

The next component of the M-file is a little obscure, since it uses a conditional
with a guard condition that is always false (0). This code is generated
intentionally, to give you the option of plotting the new input data against a
fit based on the old data (the data that was originally imported into Curve
Fitting Tool). To do so, simply change the 0 to true. The modified M-file then
uses the cfit method to set the coefficients of the cfit object cf_ to the
stored values computed with the old data. If you do not wish to do this, leave
this component of the M-file alone, or delete it.

% Or use coefficients from the original fit:
if 0

cv_ = { 1.3594203554767276e-005, 1724.6959436137356};
cf_ = cfit(ft_,cv_{:});

end

With the fitting complete, the M-file calls the plot method to plot the cfit
object cf_. Note that plot is called with the default plot type 'fit' (data
and fit), but is also passed a confidence level of 0.95. To use this confidence
level to plot prediction bounds for the fit or for new observations, change
'fit' to 'predfunc' or 'predobs', respectively. The rest of the code in this
component of the M-file is more Handle Graphics, along the lines of previous
components, setting Handle Graphics object properties that mimic the plot of
the fit in Curve Fitting Tool.

% Plot this fit
h_ = plot(cf_,'fit',0.95);
legend off; % turn off legend from plot method call
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set(h_(1),'Color',[1 0 0],...
'LineStyle','-', 'LineWidth',2,...
'Marker','none', 'MarkerSize',6);

legh_(end+1) = h_(1);
legt_{end+1} = 'fit 1';

Finally, the M-file takes care of “loose ends”: hold is toggled off to its default
behavior, the legend is positioned, and the x and y labels ('x' and 'y' by
default) are removed.

% Done plotting data and fits. Now finish up loose ends.
hold off;
leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};
h_ = legend(ax_,legh_,legt_,leginfo_{:}); % create legend
set(h_,'Interpreter','none');
xlabel(ax_,''); % remove x label
ylabel(ax_,''); % remove y label

Modifying the Code
With an understanding of the components of the generated M-file, it is easy
to modify the code to produce a customized curve fit and display. The basic
structure of the M-file is already in place for you, and you can concentrate on
the details that interest you most.

A natural modification of the M-file would be to edit the function declaration
at the top of the file to return the cfit object cf_ created by the fit, as follows:

function cf_ = myfit2(cdate,pop)

Note the change in the function name from myfit to myfit2. The modified
M-file should then be saved to a file named myfit2.m.

You might also want to return goodness-of-fit statistics, which the M-file, by
default, does not compute. You would have to modify both the call to fit:

[cf_,gof] = fit(cdate(ok_),pop(ok_),ft_,fo_);

and the function declaration:

function [cf_,gof] = myfit2(cdate,pop)
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You might also want to alter the call to plot, say to show prediction intervals
for new observations:

h_ = plot(cf_,'predobs',0.95);

Running the M-file with the above modifications on the new data from
“Running the Generated M-file” on page 3-26 produces the following output
to the command line:

[c,g] = myfit2(cdate,newpop)
c =

General model:
c(x) = a*(x-b)^3

Coefficients (with 95% confidence bounds):
a = 7.211e-006 (-2.389e-006, 1.681e-005)
b = 1670 (1548, 1792)

g =
sse: 5.5691e+004

rsquare: 0.6561
dfe: 19

adjrsquare: 0.6380
rmse: 54.1398

and the following display:
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Data Transformations
Changing variables through data transformations may lead to a simplified
relationship between the transformed predictor variable and the transformed
response. As a result, model descriptions and predictions may be simplified.

Common transformations include the logarithm ln(y), and power functions
such as y1/2, y-1, and so on. Using these transformations, you can linearize a
nonlinear model, contract response data that spans one or more orders of
magnitude, or simplify a model so that it involves fewer coefficients.

Note You must transform variables at the MATLAB® command line, and
then import those variables into Curve Fitting Tool. You cannot transform
variables using any of the graphical user interfaces.

For example, suppose you want to use the following model to fit your data.

If you decide to use the power transform y-1, then the transformed model is
given by

As another example, the equation

becomes linear if you take the log transform of both sides.

You can now use linear least-squares fitting procedures.

There are several disadvantages associated with performing transformations:
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• For the log transformation, negative response values cannot be processed.

• For all transformations, the basic assumption that the residual variance
is constant is violated. To avoid this problem, you could plot the residuals
on the transformed scale. For the power transformation shown above, the
transformed scale is given by the residuals

Note that the residual plot associated with Curve Fitting Tool does not
support transformed scales.

Deciding on a particular transformation is not always obvious. However,
a scatter plot will often reveal the best form to use. In practice you can
experiment with various transforms and then plot the residuals from the
command line using the transformed scale. If the errors are reasonable
(they appear random with minimal scatter, and don’t exhibit any systematic
behavior), the transform is a good candidate.
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Filtering and Smoothing

In this section...

“Moving Average Filtering” on page 4-4

“Savitzky-Golay Filtering” on page 4-6

“Local Regression Smoothing” on page 4-7

“Smoothing Splines” on page 4-13

Moving Average Filtering
A moving average filter smooths data by replacing each data point with the
average of the neighboring data points defined within the span. This process
is equivalent to lowpass filtering with the response of the smoothing given by
the difference equation

where ys(i) is the smoothed value for the ith data point, N is the number of
neighboring data points on either side of ys(i), and 2N+1 is the span.

The moving average smoothing method used by Curve Fitting Toolbox™
software follows these rules:

• The span must be odd.

• The data point to be smoothed must be at the center of the span.

• The span is adjusted for data points that cannot accommodate the specified
number of neighbors on either side.

• The end points are not smoothed because a span cannot be defined.

Note that you can use filter function to implement difference equations such
as the one shown above. However, because of the way that the end points are
treated, the toolbox moving average result will differ from the result returned
by filter. Refer to Difference Equations and Filtering in the MATLAB®

documentation for more information.
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For example, suppose you smooth data using a moving average filter with a
span of 5. Using the rules described above, the first four elements of ys are
given by

ys(1) = y(1)
ys(2) = (y(1)+y(2)+y(3))/3
ys(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5
ys(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

Note that ys(1), ys(2), ... ,ys(end) refer to the order of the data after sorting,
and not necessarily the original order.

The smoothed values and spans for the first four data points of a generated
data set are shown below.
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Plot (a) indicates that the first data point is not smoothed because a span
cannot be constructed. Plot (b) indicates that the second data point is
smoothed using a span of three. Plots (c) and (d) indicate that a span of five
is used to calculate the smoothed value.

Savitzky-Golay Filtering
Savitzky-Golay filtering can be thought of as a generalized moving average.
You derive the filter coefficients by performing an unweighted linear
least-squares fit using a polynomial of a given degree. For this reason, a
Savitzky-Golay filter is also called a digital smoothing polynomial filter or a
least-squares smoothing filter. Note that a higher degree polynomial makes
it possible to achieve a high level of smoothing without attenuation of data
features.

The Savitzky-Golay filtering method is often used with frequency data or
with spectroscopic (peak) data. For frequency data, the method is effective
at preserving the high-frequency components of the signal. For spectroscopic
data, the method is effective at preserving higher moments of the peak such
as the line width. By comparison, the moving average filter tends to filter
out a significant portion of the signal’s high-frequency content, and it can
only preserve the lower moments of a peak such as the centroid. However,
Savitzky-Golay filtering can be less successful than a moving average filter
at rejecting noise.

The Savitzky-Golay smoothing method used by Curve Fitting Toolbox
software follows these rules:

• The span must be odd.

• The polynomial degree must be less than the span.

• The data points are not required to have uniform spacing.

Normally, Savitzky-Golay filtering requires uniform spacing of the predictor
data. However, the Curve Fitting Toolbox algorithm supports nonuniform
spacing. Therefore, you are not required to perform an additional filtering
step to create data with uniform spacing.

The plot shown below displays generated Gaussian data and several attempts
at smoothing using the Savitzky-Golay method. The data is very noisy and
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the peak widths vary from broad to narrow. The span is equal to 5% of the
number of data points.

Plot (a) shows the noisy data. To more easily compare the smoothed results,
plots (b) and (c) show the data without the added noise.

Plot (b) shows the result of smoothing with a quadratic polynomial. Notice
that the method performs poorly for the narrow peaks. Plot (c) shows the
result of smoothing with a quartic polynomial. In general, higher degree
polynomials can more accurately capture the heights and widths of narrow
peaks, but can do poorly at smoothing wider peaks.

Local Regression Smoothing

• “Lowess and Loess” on page 4-8
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• “The Local Regression Method” on page 4-8

• “Robust Local Regression” on page 4-11

Lowess and Loess
The names “lowess” and “loess” are derived from the term “locally weighted
scatter plot smooth,” as both methods use locally weighted linear regression
to smooth data.

The smoothing process is considered local because, like the moving average
method, each smoothed value is determined by neighboring data points
defined within the span. The process is weighted because a regression weight
function is defined for the data points contained within the span. In addition
to the regression weight function, you can use a robust weight function, which
makes the process resistant to outliers. Finally, the methods are differentiated
by the model used in the regression: lowess uses a linear polynomial, while
loess uses a quadratic polynomial.

The local regression smoothing methods used by Curve Fitting Toolbox
software follow these rules:

• The span can be even or odd.

• You can specify the span as a percentage of the total number of data points
in the data set. For example, a span of 0.1 uses 10% of the data points.

The Local Regression Method
The local regression smoothing process follows these steps for each data point:

1 Compute the regression weights for each data point in the span. The
weights are given by the tricube function shown below.

x is the predictor value associated with the response value to be smoothed,
xi are the nearest neighbors of x as defined by the span, and d(x) is the
distance along the abscissa from x to the most distant predictor value
within the span. The weights have these characteristics:
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• The data point to be smoothed has the largest weight and the most
influence on the fit.

• Data points outside the span have zero weight and no influence on the fit.

2 A weighted linear least-squares regression is performed. For lowess, the
regression uses a first degree polynomial. For loess, the regression uses a
second degree polynomial.

3 The smoothed value is given by the weighted regression at the predictor
value of interest.

If the smooth calculation involves the same number of neighboring data points
on either side of the smoothed data point, the weight function is symmetric.
However, if the number of neighboring points is not symmetric about the
smoothed data point, then the weight function is not symmetric. Note that
unlike the moving average smoothing process, the span never changes. For
example, when you smooth the data point with the smallest predictor value,
the shape of the weight function is truncated by one half, the leftmost data
point in the span has the largest weight, and all the neighboring points are
to the right of the smoothed value.
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The weight function for an end point and for an interior point is shown below
for a span of 31 data points.

Using the lowess method with a span of five, the smoothed values and
associated regressions for the first four data points of a generated data set
are shown below.

4-10



Filtering and Smoothing

Notice that the span does not change as the smoothing process progresses
from data point to data point. However, depending on the number of nearest
neighbors, the regression weight function might not be symmetric about the
data point to be smoothed. In particular, plots (a) and (b) use an asymmetric
weight function, while plots (c) and (d) use a symmetric weight function.

For the loess method, the graphs would look the same except the smoothed
value would be generated by a second-degree polynomial.

Robust Local Regression
If your data contains outliers, the smoothed values can become distorted,
and not reflect the behavior of the bulk of the neighboring data points. To
overcome this problem, you can smooth the data using a robust procedure that
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is not influenced by a small fraction of outliers. For a description of outliers,
refer to “Marking Outliers” on page 2-19.

Curve Fitting Toolbox software provides a robust version for both the lowess
and loess smoothing methods. These robust methods include an additional
calculation of robust weights, which is resistant to outliers. The robust
smoothing procedure follows these steps:

1 Calculate the residuals from the smoothing procedure described in the
previous section.

2 Compute the robust weights for each data point in the span. The weights
are given by the bisquare function shown below.

ri is the residual of the ith data point produced by the regression smoothing
procedure, and MAD is the median absolute deviation of the residuals:

The median absolute deviation is a measure of how spread out the residuals
are. If ri is small compared to 6MAD, then the robust weight is close to 1.
If ri is greater than 6MAD, the robust weight is 0 and the associated data
point is excluded from the smooth calculation.

3 Smooth the data again using the robust weights. The final smoothed value
is calculated using both the local regression weight and the robust weight.

4 Repeat the previous two steps for a total of five iterations.

The smoothing results of the lowess procedure are compared below to the
results of the robust lowess procedure for a generated data set that contains a
single outlier. The span for both procedures is 11 data points.
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Plot (a) shows that the outlier influences the smoothed value for several
nearest neighbors. Plot (b) suggests that the residual of the outlier is greater
than six median absolute deviations. Therefore, the robust weight is zero for
this data point. Plot (c) shows that the smoothed values neighboring the
outlier reflect the bulk of the data.

Smoothing Splines
If your data is noisy, you might want to fit it using a smoothing spline.
Alternatively, you can use one of the smoothing methods described in
“Smoothing Data” on page 2-9.

The smoothing spline s is constructed for the specified smoothing parameter p
and the specified weights wi. The smoothing spline minimizes
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If the weights are not specified, they are assumed to be 1 for all data points.

p is defined between 0 and 1. p = 0 produces a least-squares straight-line
fit to the data, while p = 1 produces a cubic spline interpolant. If you do
not specify the smoothing parameter, it is automatically selected in the
“interesting range.” The interesting range of p is often near 1/(1+h3/6) where
h is the average spacing of the data points, and it is typically much smaller
than the allowed range of the parameter. Because smoothing splines have
an associated smoothing parameter, you might consider these fits to be
parametric in that sense. However, smoothing splines are also piecewise
polynomials like cubic spline or shape-preserving interpolants and are
considered a nonparametric fit type in this guide.

Note The Curve Fitting Toolbox smoothing spline algorithm is based on the
Spline Toolbox™ csaps function.

The nuclear reaction data from the file carbon12alpha.mat is shown below
with three smoothing spline fits. The default smoothing parameter (p = 0.99)
produces the smoothest curve. The cubic spline curve (p = 1) goes through
all the data points, but is not quite as smooth. The third curve (p = 0.95)
misses the data by wide margin and illustrates how small the “interesting
range” of p can be.
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Least-Squares Fitting

In this section...

“Introduction” on page 4-16

“Error Distributions” on page 4-17

“Linear Least Squares” on page 4-18

“Weighted Least Squares” on page 4-21

“Robust Least Squares” on page 4-23

“Nonlinear Least Squares” on page 4-25

Introduction
Curve Fitting Toolbox™ software uses the method of least squares when
fitting data. Fitting requires a parametric model that relates the response
data to the predictor data with one or more coefficients. The result of the
fitting process is an estimate of the model coefficients.

To obtain the coefficient estimates, the least-squares method minimizes the
summed square of residuals. The residual for the ith data point ri is defined as
the difference between the observed response value yi and the fitted response
value , and is identified as the error associated with the data.

The summed square of residuals is given by

where n is the number of data points included in the fit and S is the sum of
squares error estimate. The supported types of least-squares fitting include:

• Linear least squares
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• Weighted linear least squares

• Robust least squares

• Nonlinear least squares

Error Distributions
When fitting data that contains random variations, there are two important
assumptions that are usually made about the error:

• The error exists only in the response data, and not in the predictor data.

• The errors are random and follow a normal (Gaussian) distribution with
zero mean and constant variance, σ2.

The second assumption is often expressed as

The errors are assumed to be normally distributed because the normal
distribution often provides an adequate approximation to the distribution
of many measured quantities. Although the least-squares fitting method
does not assume normally distributed errors when calculating parameter
estimates, the method works best for data that does not contain a large
number of random errors with extreme values. The normal distribution is
one of the probability distributions in which extreme random errors are
uncommon. However, statistical results such as confidence and prediction
bounds do require normally distributed errors for their validity.

If the mean of the errors is zero, then the errors are purely random. If the
mean is not zero, then it might be that the model is not the right choice for
your data, or the errors are not purely random and contain systematic errors.

A constant variance in the data implies that the “spread” of errors is constant.
Data that has the same variance is sometimes said to be of equal quality.

The assumption that the random errors have constant variance is not implicit
to weighted least-squares regression. Instead, it is assumed that the weights
provided in the fitting procedure correctly indicate the differing levels of
quality present in the data. The weights are then used to adjust the amount
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of influence each data point has on the estimates of the fitted coefficients to
an appropriate level.

Linear Least Squares
Curve Fitting Toolbox software uses the linear least-squares method to fit a
linear model to data. A linear model is defined as an equation that is linear in
the coefficients. For example, polynomials are linear but Gaussians are not.
To illustrate the linear least-squares fitting process, suppose you have n data
points that can be modeled by a first-degree polynomial.

To solve this equation for the unknown coefficients p1 and p2, you write S as a
system of n simultaneous linear equations in two unknowns. If n is greater
than the number of unknowns, then the system of equations is overdetermined.

Because the least-squares fitting process minimizes the summed square of
the residuals, the coefficients are determined by differentiating S with respect
to each parameter, and setting the result equal to zero.

The estimates of the true parameters are usually represented by b.
Substituting b1 and b2 for p1 and p2, the previous equations become
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where the summations run from i =1 to n. The normal equations are defined as

Solving for b1

Solving for b2 using the b1 value

As you can see, estimating the coefficients p1 and p2 requires only a few
simple calculations. Extending this example to a higher degree polynomial is
straightforward although a bit tedious. All that is required is an additional
normal equation for each linear term added to the model.

In matrix form, linear models are given by the formula

where

• y is an n-by-1 vector of responses.

• β is a m-by-1 vector of coefficients.

• X is the n-by-m design matrix for the model.

• is an n-by-1 vector of errors.
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For the first-degree polynomial, the n equations in two unknowns are
expressed in terms of y, X, and β as

The least-squares solution to the problem is a vector b, which estimates the
unknown vector of coefficients β. The normal equations are given by

where XT is the transpose of the design matrix X. Solving for b,

Use the MATLAB® backslash operator (mldivide) to solve a system of
simultaneous linear equations for unknown coefficients. Because inverting
XTX can lead to unacceptable rounding errors, the backslash operator uses
QR decomposition with pivoting, which is a very stable algorithm numerically.
Refer to Arithmetic Operators in the MATLAB documentation for more
information about the backslash operator and QR decomposition.

You can plug b back into the model formula to get the predicted response
values, .
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A hat (circumflex) over a letter denotes an estimate of a parameter or a
prediction from a model. The projection matrix H is called the hat matrix,
because it puts the hat on y.

The residuals are given by

Weighted Least Squares
It is usually assumed that the response data is of equal quality and, therefore,
has constant variance. If this assumption is violated, your fit might be unduly
influenced by data of poor quality. To improve the fit, you can use weighted
least-squares regression where an additional scale factor (the weight) is
included in the fitting process. Weighted least-squares regression minimizes
the error estimate

where wi are the weights. The weights determine how much each response
value influences the final parameter estimates. A high-quality data point
influences the fit more than a low-quality data point. Weighting your data
is recommended if the weights are known, or if there is justification that
they follow a particular form.

The weights modify the expression for the parameter estimates b in the
following way,

where W is given by the diagonal elements of the weight matrix w.

You can often determine whether the variances are not constant by fitting the
data and plotting the residuals. In the plot shown below, the data contains
replicate data of various quality and the fit is assumed to be correct. The poor
quality data is revealed in the plot of residuals, which has a “funnel” shape
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where small predictor values yield a bigger scatter in the response values
than large predictor values.

The weights you supply should transform the response variances to a constant
value. If you know the variances of the measurement errors in your data,
then the weights are given by

Or, if you only have estimates of the error variable for each data point, it
usually suffices to use those estimates in place of the true variance. If you
do not know the variances, it suffices to specify weights on a relative scale.
Note that an overall variance term is estimated even when weights have been
specified. In this instance, the weights define the relative weight to each point
in the fit, but are not taken to specify the exact variance of each point.
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For example, if each data point is the mean of several independent
measurements, it might make sense to use those numbers of measurements
as weights.

Robust Least Squares
It is usually assumed that the response errors follow a normal distribution,
and that extreme values are rare. Still, extreme values called outliers do occur.

The main disadvantage of least-squares fitting is its sensitivity to outliers.
Outliers have a large influence on the fit because squaring the residuals
magnifies the effects of these extreme data points. To minimize the influence
of outliers, you can fit your data using robust least-squares regression. The
toolbox provides these two robust regression methods:

• Least absolute residuals (LAR) — The LAR method finds a curve that
minimizes the absolute difference of the residuals, rather than the squared
differences. Therefore, extreme values have a lesser influence on the fit.

• Bisquare weights — This method minimizes a weighted sum of squares,
where the weight given to each data point depends on how far the point
is from the fitted line. Points near the line get full weight. Points farther
from the line get reduced weight. Points that are farther from the line than
would be expected by random chance get zero weight.

For most cases, the bisquare weight method is preferred over LAR because
it simultaneously seeks to find a curve that fits the bulk of the data using
the usual least-squares approach, and it minimizes the effect of outliers.

Robust fitting with bisquare weights uses an iteratively reweighted
least-squares algorithm, and follows this procedure:

1 Fit the model by weighted least squares.

2 Compute the adjusted residuals and standardize them. The adjusted
residuals are given by
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ri are the usual least-squares residuals and hi are leverages that adjust
the residuals by down-weighting high-leverage data points, which have a
large effect on the least-squares fit. The standardized adjusted residuals
are given by

K is a tuning constant equal to 4.685, and s is the robust variance given by
MAD/0.6745 where MAD is the median absolute deviation of the residuals.

3 Compute the robust weights as a function of u. The bisquare weights are
given by

Note that if you supply your own regression weight vector, the final weight
is the product of the robust weight and the regression weight.

4 If the fit converges, then you are done. Otherwise, perform the next
iteration of the fitting procedure by returning to the first step.

The plot shown below compares a regular linear fit with a robust fit using
bisquare weights. Notice that the robust fit follows the bulk of the data and is
not strongly influenced by the outliers.
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Instead of minimizing the effects of outliers by using robust regression, you
can mark data points to be excluded from the fit. Refer to “Excluding and
Sectioning Data” on page 2-17 for more information.

Nonlinear Least Squares
Curve Fitting Toolbox software uses the nonlinear least-squares formulation
to fit a nonlinear model to data. A nonlinear model is defined as an equation
that is nonlinear in the coefficients, or a combination of linear and nonlinear
in the coefficients. For example, Gaussians, ratios of polynomials, and power
functions are all nonlinear.

In matrix form, nonlinear models are given by the formula

where
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• y is an n-by-1 vector of responses.

• f is a function of β and X.

• β is a m-by-1 vector of coefficients.

• X is the n-by-m design matrix for the model.

• is an n-by-1 vector of errors.

Nonlinear models are more difficult to fit than linear models because the
coefficients cannot be estimated using simple matrix techniques. Instead, an
iterative approach is required that follows these steps:

1 Start with an initial estimate for each coefficient. For some nonlinear
models, a heuristic approach is provided that produces reasonable starting
values. For other models, random values on the interval [0,1] are provided.

2 Produce the fitted curve for the current set of coefficients. The fitted
response value is given by

and involves the calculation of the Jacobian of f(X,b), which is defined as a
matrix of partial derivatives taken with respect to the coefficients.

3 Adjust the coefficients and determine whether the fit improves. The
direction and magnitude of the adjustment depend on the fitting algorithm.
The toolbox provides these algorithms:

• Trust-region — This is the default algorithm and must be used if
you specify coefficient constraints. It can solve difficult nonlinear
problems more efficiently than the other algorithms and it represents an
improvement over the popular Levenberg-Marquardt algorithm.

• Levenberg-Marquardt — This algorithm has been used for many years
and has proved to work most of the time for a wide range of nonlinear
models and starting values. If the trust-region algorithm does not
produce a reasonable fit, and you do not have coefficient constraints, you
should try the Levenberg-Marquardt algorithm.

• Gauss-Newton — This algorithm is potentially faster than the other
algorithms, but it assumes that the residuals are close to zero. It’s
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included with the toolbox for pedagogical reasons and should be the last
choice for most models and data sets.

4 Iterate the process by returning to step 2 until the fit reaches the specified
convergence criteria.

You can use weights and robust fitting for nonlinear models, and the fitting
process is modified accordingly.

Because of the nature of the approximation process, no algorithm is foolproof
for all nonlinear models, data sets, and starting points. Therefore, if you do
not achieve a reasonable fit using the default starting points, algorithm, and
convergence criteria, you should experiment with different options. Refer to
“Specifying Fit Options” on page 2-59 for a description of how to modify the
default options. Because nonlinear models can be particularly sensitive to the
starting points, this should be the first fit option you modify.
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Residual Analysis

In this section...

“Introduction” on page 4-28

“Computing Residuals” on page 4-29

“Goodness-of-Fit Statistics” on page 4-31

“Confidence and Prediction Bounds” on page 4-34

“Example: Residual Analysis” on page 4-39

Introduction
After fitting data with one or more models, you should evaluate the goodness
of fit. A visual examination of the fitted curve displayed in Curve Fitting Tool
should be your first step. Beyond that, the toolbox provides these methods to
assess goodness of fit for both linear and nonlinear parametric fits:

• Residual analysis

• Goodness of fit statistics

• Confidence and prediction bounds

As is common in statistical literature, the term goodness of fit is used here
in several senses: A “good fit” might be a model

• that your data could reasonably have come from, given the assumptions of
least-squares fitting

• in which the model coefficients can be estimated with little uncertainty

• that explains a high proportion of the variability in your data, and is able
to predict new observations with high certainty

A particular application might dictate still other aspects of model fitting that
are important to achieving a good fit, such as a simple model that is easy to
interpret. The methods described here can help you determine goodness of
fit in all these senses.
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These methods group into two types: graphical and numerical. Plotting
residuals and prediction bounds are graphical methods that aid visual
interpretation, while computing goodness-of-fit statistics and coefficient
confidence bounds yield numerical measures that aid statistical reasoning.

Generally speaking, graphical measures are more beneficial than numerical
measures because they allow you to view the entire data set at once, and they
can easily display a wide range of relationships between the model and the
data. The numerical measures are more narrowly focused on a particular
aspect of the data and often try to compress that information into a single
number. In practice, depending on your data and analysis requirements, you
might need to use both types to determine the best fit.

Note that it is possible that none of your fits can be considered suitable for
your data, based on these methods. In this case, it might be that you need
to select a different model. It is also possible that all the goodness-of-fit
measures indicate that a particular fit is suitable. However, if your goal is to
extract fitted coefficients that have physical meaning, but your model does not
reflect the physics of the data, the resulting coefficients are useless. In this
case, understanding what your data represents and how it was measured is
just as important as evaluating the goodness of fit.

Computing Residuals
The residuals from a fitted model are defined as the differences between the
response data and the fit to the response data at each predictor value.

residual = data – fit

You display the residuals in Curve Fitting Tool by selecting the menu item
View > Residuals.

Mathematically, the residual for a specific predictor value is the difference
between the response value y and the predicted response value .

Assuming the model you fit to the data is correct, the residuals approximate
the random errors. Therefore, if the residuals appear to behave randomly, it
suggests that the model fits the data well. However, if the residuals display
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a systematic pattern, it is a clear sign that the model fits the data poorly.
Always bear in mind that many results of model fitting, such as confidence
bounds, will be invalid should the model be grossly inappropriate for the data.

A graphical display of the residuals for a first degree polynomial fit is shown
below. The top plot shows that the residuals are calculated as the vertical
distance from the data point to the fitted curve. The bottom plot displays the
residuals relative to the fit, which is the zero line.

The residuals appear randomly scattered around zero indicating that the
model describes the data well.
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A graphical display of the residuals for a second-degree polynomial fit is
shown below. The model includes only the quadratic term, and does not
include a linear or constant term.

The residuals are systematically positive for much of the data range indicating
that this model is a poor fit for the data.

Goodness-of-Fit Statistics
After using graphical methods to evaluate the goodness of fit, you should
examine the goodness-of-fit statistics. Curve Fitting Toolbox™ software
supports these goodness-of-fit statistics for parametric models:

• The sum of squares due to error (SSE)

• R-square

• Adjusted R-square

• Root mean squared error (RMSE)

4-31



4 Curve Fitting Techniques

For the current fit, these statistics are displayed in the Results list box in the
Fit Editor. For all fits in the current curve-fitting session, you can compare
the goodness-of-fit statistics in the Table of fits.

Sum of Squares Due to Error
This statistic measures the total deviation of the response values from the
fit to the response values. It is also called the summed square of residuals
and is usually labeled as SSE.

A value closer to 0 indicates that the model has a smaller random error
component, and that the fit will be more useful for prediction.

R-Square
This statistic measures how successful the fit is in explaining the variation of
the data. Put another way, R-square is the square of the correlation between
the response values and the predicted response values. It is also called the
square of the multiple correlation coefficient and the coefficient of multiple
determination.

R-square is defined as the ratio of the sum of squares of the regression (SSR)
and the total sum of squares (SST). SSR is defined as

SST is also called the sum of squares about the mean, and is defined as

where SST = SSR + SSE. Given these definitions, R-square is expressed as
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R-square can take on any value between 0 and 1, with a value closer to 1
indicating that a greater proportion of variance is accounted for by the model.
For example, an R-square value of 0.8234 means that the fit explains 82.34%
of the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will
increase although the fit may not improve in a practical sense. To avoid this
situation, you should use the degrees of freedom adjusted R-square statistic
described below.

Note that it is possible to get a negative R-square for equations that do not
contain a constant term. Because R-square is defined as the proportion of
variance explained by the fit, if the fit is actually worse than just fitting a
horizontal line then R-square is negative. In this case, R-square cannot be
interpreted as the square of a correlation. Such situations indicate that a
constant term should be added to the model.

Degrees of Freedom Adjusted R-Square
This statistic uses the R-square statistic defined above, and adjusts it based
on the residual degrees of freedom. The residual degrees of freedom is defined
as the number of response values n minus the number of fitted coefficients m
estimated from the response values.

v indicates the number of independent pieces of information involving the
n data points that are required to calculate the sum of squares. Note that
if parameters are bounded and one or more of the estimates are at their
bounds, then those estimates are regarded as fixed. The degrees of freedom is
increased by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality
when you compare two models that are nested — that is, a series of models
each of which adds additional coefficients to the previous model.
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The adjusted R-square statistic can take on any value less than or equal to
1, with a value closer to 1 indicating a better fit. Negative values can occur
when the model contains terms that do not help to predict the response.

Root Mean Squared Error
This statistic is also known as the fit standard error and the standard error
of the regression. It is an estimate of the standard deviation of the random
component in the data, and is defined as

where MSE is the mean square error or the residual mean square

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful
for prediction.

Confidence and Prediction Bounds
Curve Fitting Toolbox software lets you calculate confidence bounds for the
fitted coefficients, and prediction bounds for new observations or for the fitted
function. Additionally, for prediction bounds, you can calculate simultaneous
bounds, which take into account all predictor values, or you can calculate
nonsimultaneous bounds, which take into account only individual predictor
values. The coefficient confidence bounds are presented numerically, while
the prediction bounds are displayed graphically and are also available
numerically.

The available confidence and prediction bounds are summarized below.
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Types of Confidence and Prediction Bounds

Interval Type Description

Fitted coefficients Confidence bounds for the fitted coefficients

New observation Prediction bounds for a new observation (response
value)

New function Prediction bounds for a new function value

Note Prediction bounds are also often described as confidence bounds because
you are calculating a confidence interval for a predicted response.

Confidence and prediction bounds define the lower and upper values of the
associated interval, and define the width of the interval. The width of the
interval indicates how uncertain you are about the fitted coefficients, the
predicted observation, or the predicted fit. For example, a very wide interval
for the fitted coefficients can indicate that you should use more data when
fitting before you can say anything very definite about the coefficients.

The bounds are defined with a level of certainty that you specify. The level of
certainty is often 95%, but it can be any value such as 90%, 99%, 99.9%, and
so on. For example, you might want to take a 5% chance of being incorrect
about predicting a new observation. Therefore, you would calculate a 95%
prediction interval. This interval indicates that you have a 95% chance
that the new observation is actually contained within the lower and upper
prediction bounds.

Calculating and Displaying Confidence Bounds
The confidence bounds for fitted coefficients are given by

where b are the coefficients produced by the fit, t depends on the confidence
level, and is computed using the inverse of Student’s t cumulative distribution
function, and S is a vector of the diagonal elements from the estimated
covariance matrix of the coefficient estimates, (XTX)-1s2. In a linear fit, X is
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the design matrix, while for a nonlinear fit X is the Jacobian of the fitted
values with respect to the coefficients. XT is the transpose of X, and s2 is the
mean squared error.

The confidence bounds are displayed in the Results list box in the Fit Editor
using the following format.

p1 = 1.275 (1.113, 1.437)

The fitted value for the coefficient p1 is 1.275, the lower bound is 1.113,
the upper bound is 1.437, and the interval width is 0.324. By default, the
confidence level for the bounds is 95%. You can change this level to any value
with the View > Confidence Level menu item in Curve Fitting Tool.

You can calculate confidence intervals at the command line with the confint
function.

Calculating and Displaying Prediction Bounds
As mentioned previously, you can calculate prediction bounds for a new
observation or for the fitted curve. In both cases, the prediction is based on
an existing fit to the data. Additionally, the bounds can be simultaneous
and measure the confidence for all predictor values, or they can be
nonsimultaneous and measure the confidence only for a single predetermined
predictor value. If you are predicting a new observation, nonsimultaneous
bounds measure the confidence that the new observation lies within the
interval given a single predictor value. Simultaneous bounds measure the
confidence that a new observation lies within the interval regardless of the
predictor value.

The nonsimultaneous prediction bounds for a new observation at the predictor
value x are given by

where s2 is the mean squared error, t depends on the confidence level, and is
computed using the inverse of Student’s t cumulative distribution function,
and S is the covariance matrix of the coefficient estimates, (XTX)-1s2. Note
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that x is defined as a row vector of the design matrix or Jacobian evaluated at
a specified predictor value.

The simultaneous prediction bounds for a new observation and for all
predictor values are given by

where f depends on the confidence level, and is computed using the inverse of
the F cumulative distribution function..

The nonsimultaneous prediction bounds for the function at a single predictor
value x are given by

The simultaneous prediction bounds for the function and for all predictor
values are given by

You can graphically display prediction bounds two ways: using Curve
Fitting Tool or using the Analysis GUI. With Curve Fitting Tool, you can
display nonsimultaneous prediction bounds for new observations with
View > Prediction Bounds. By default, the confidence level for the bounds
is 95%. You can change this level to any value with View > Confidence
Level. With the Analysis GUI, you can display nonsimultaneous prediction
bounds for the function or for new observations. Additionally, you can view
prediction bounds in the Results box of the Analysis GUI.

You can display numerical prediction bounds of any type at the command line
with the predint function.

To understand the quantities associated with each type of prediction interval,
recall that the data, fit, and residuals are related through the formula

data = fit + residuals
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where the fit and residuals terms are estimates of terms in the formula

data = model + random error

Suppose you plan to take a new observation at the predictor value xn+1. Call
the new observation yn+1(xn+1) and the associated error en+1. Then yn+1(xn+1)
satisfies the equation

where f(xn+1) is the true but unknown function you want to estimate at xn+1.
The likely values for the new observation or for the estimated function are
provided by the nonsimultaneous prediction bounds.

If instead you want the likely value of the new observation to be associated
with any predictor value, the previous equation becomes

The likely values for this new observation or for the estimated function are
provided by the simultaneous prediction bounds.

The types of prediction bounds are summarized below.

Types of Prediction Bounds

Type of Bound
Simultaneous or
Non-simultaneous Associated Equation

Non-simultaneous yn+1(xn+1)Observation

Simultaneous yn+1(x), globally for any
x

Non-simultaneous f(xn+1)Function

Simultaneous f(x), simultaneously for
all x

The nonsimultaneous and simultaneous prediction bounds for a new
observation and the fitted function are shown below. Each graph contains
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three curves: the fit, the lower confidence bounds, and the upper confidence
bounds. The fit is a single-term exponential to generated data and the
bounds reflect a 95% confidence level. Note that the intervals associated
with a new observation are wider than the fitted function intervals because
of the additional uncertainty in predicting a new response value (the fit plus
random errors).

Example: Residual Analysis
This example fits several polynomial models to generated data and evaluates
how well those models fit the data and how precisely they can predict. The
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data is generated from a cubic curve, and there is a large gap in the range of
the x variable where no data exist.

x = [1:0.1:3 9:0.1:10]';
c = [2.5 -0.5 1.3 -0.1];
y = c(1) + c(2)*x + c(3)*x.^2 + c(4)*x.^3 + (rand(size(x))-0.5);

After you import the data, fit it using a cubic polynomial and a fifth degree
polynomial. The data, fits, and residuals are shown below. You display the
residuals in Curve Fitting Tool with the View > Residuals menu item.

Both models appear to fit the data well, and the residuals appear to be
randomly distributed around zero. Therefore, a graphical evaluation of the
fits does not reveal any obvious differences between the two equations.
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The numerical fit results are shown below.

As expected, the fit results for poly3 are reasonable because the generated
data follows a cubic curve. The 95% confidence bounds on the fitted coefficients
indicate that they are acceptably precise. However, the 95% confidence
bounds for poly5 indicate that the fitted coefficients are not known precisely.

The goodness-of-fit statistics are shown in the Table of Fits. By default, the
adjusted R-square and RMSE statistics are not displayed in the table. To
display these statistics, click the Table options button and select Adj R-sq
and RMSE, as shown below.
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The statistics do not reveal a substantial difference between the two equations.

The 95% nonsimultaneous prediction bounds for new observations are
shown below. To display prediction bounds in Curve Fitting Tool, select
the View > Prediction Bounds menu item. Alternatively, you can view
prediction bounds for the function or for new observations using the Analysis
GUI.
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The prediction bounds for poly3 indicate that new observations can be
predicted with a small uncertainty throughout the entire data range. This is
not the case for poly5. It has wider prediction bounds in the area where no
data exist, apparently because the data does not contain enough information
to estimate the higher degree polynomial terms accurately. In other words, a
fifth-degree polynomial overfits the data. You can confirm this by using the
Analysis GUI to compute bounds for the functions themselves.

The 95% prediction bounds for the fitted function using poly5 are shown
below. As you can see, the uncertainty in predicting the function is large in
the center of the data. Therefore, you would conclude that more data must
be collected before you can make precise predictions using a fifth-degree
polynomial.
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In conclusion, you should examine all available goodness-of-fit measures
before deciding on the fit that is best for your purposes. A graphical
examination of the fit and residuals should always be your initial approach.
However, some fit characteristics are revealed only through numerical fit
results, statistics, and prediction bounds.
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Interpolants
Interpolation is a process for estimating values that lie between known data
points. The supported interpolant methods are shown below.

Interpolant Methods

Method Description

Linear Linear interpolation. This method fits a different
linear polynomial between each pair of data points.

Nearest neighbor Nearest neighbor interpolation. This method sets
the value of an interpolated point to the value of the
nearest data point. Therefore, this method does not
generate any new data points.

Cubic spline Cubic spline interpolation. This method fits a
different cubic polynomial between each pair of data
points.

Shape-preserving Piecewise cubic Hermite interpolation (PCHIP). This
method preserves monotonicity and the shape of the
data.

The type of interpolant you should use depends on the characteristics of the
data being fit, the required smoothness of the curve, speed considerations,
post-fit analysis requirements, and so on. The linear and nearest neighbor
methods are fast, but the resulting curves are not very smooth. The cubic
spline and shape-preserving methods are slower, but the resulting curves
are often very smooth.

For example, the nuclear reaction data from the file carbon12alpha.mat is
shown below with a nearest neighbor interpolant fit and a shape-preserving
(PCHIP) interpolant fit. Clearly, the nearest neighbor interpolant does not
follow the data as well as the shape-preserving interpolant. The difference
between these two fits can be important if you are interpolating. However,
if you want to integrate the data to get a sense of the total strength of the
reaction, then both fits provide nearly identical answers for reasonable
integration bin widths.
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Note Goodness-of-fit statistics, prediction bounds, and weights are not
defined for interpolants. Additionally, the fit residuals are always zero (within
computer precision) because interpolants pass through the data points.

Interpolants are defined as piecewise polynomials because the fitted curve is
constructed from many “pieces.” For cubic spline and PCHIP interpolation,
each piece is described by four coefficients, which are calculated using a cubic
(third-degree) polynomial. Refer to the spline function for more information
about cubic spline interpolation. Refer to the pchip function for more
information about shape-preserving interpolation, and for a comparison of
the two methods.

It is possible to fit a single “global” polynomial interpolant to data, with a
degree one less than the number of data points. However, such a fit can
have wildly erratic behavior between data points. In contrast, the piecewise
polynomials described here always produce a well-behaved fit, and thus they
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are more flexible than parametric polynomials and can be effectively used for
a wider range of data sets.
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5

Function Reference

Preprocessing Data (p. 5-2) Preparing data for fitting

Fitting Data (p. 5-2) Creating data fits

Fit Type Methods (p. 5-2) Manipulating data models

Curve Fit Methods (p. 5-3) Manipulating data fits

Postprocessing Fits (p. 5-4) Evaluating data fits

Information and Help (p. 5-5) Data and model summaries



5 Function Reference

Preprocessing Data
cftool Open Curve Fitting Tool

excludedata Exclude data from fit

smooth Smooth response data

Fitting Data
cftool Open Curve Fitting Tool

fit Fit model to data

fitoptions Create or modify fit options structure

fittype Constructor for fittype object

get Get fit options structure field names
and values

set Assign values in fit options structure

Fit Type Methods
argnames Input argument names of cfit or

fittype object

category Category of fit of cfit or fittype
object

coeffnames Coefficient names of cfit or fittype
object

dependnames Dependent variable of cfit or
fittype object

feval Evaluate cfit or fittype object

fittype Constructor for fittype object
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Curve Fit Methods

formula Formula of cfit or fittype object

indepnames Independent variable of cfit or
fittype object

islinear Determine if cfit or fittype object
is linear

numargs Number of input arguments of cfit
or fittype object

numcoeffs Number of coefficients of cfit or
fittype object

probnames Problem-dependent parameter
names of cfit or fittype object

type Name of cfit or fittype object

Curve Fit Methods
argnames Input argument names of cfit or

fittype object

category Category of fit of cfit or fittype
object

cfit Constructor for cfit object

coeffnames Coefficient names of cfit or fittype
object

coeffvalues Coefficient values of cfit object

confint Confidence intervals for fit
coefficients of cfit object

dependnames Dependent variable of cfit or
fittype object

differentiate Differentiate cfit object

feval Evaluate cfit or fittype object

formula Formula of cfit or fittype object
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indepnames Independent variable of cfit or
fittype object

integrate Integrate cfit object

islinear Determine if cfit or fittype object
is linear

numargs Number of input arguments of cfit
or fittype object

numcoeffs Number of coefficients of cfit or
fittype object

plot Plot cfit object

predint Prediction intervals for cfit object

probnames Problem-dependent parameter
names of cfit or fittype object

probvalues Problem-dependent parameter
values of cfit object

type Name of cfit or fittype object

Postprocessing Fits
cftool Open Curve Fitting Tool

coeffvalues Coefficient values of cfit object

confint Confidence intervals for fit
coefficients of cfit object

differentiate Differentiate cfit object

feval Evaluate cfit or fittype object

integrate Integrate cfit object

plot Plot cfit object
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Information and Help

predint Prediction intervals for cfit object

probvalues Problem-dependent parameter
values of cfit object

Information and Help
cflibhelp Information on library models

datastats Data statistics
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argnames

Purpose Input argument names of cfit or fittype object

Syntax args = argnames(fun)

Description args = argnames(fun) returns the input argument (variable and
coefficient) names of the cfit or fittype object fun as an n-by-1 cell
array of strings args, where n = numargs(fun).

Example f = fittype('a*x^2+b*exp(n*x)');
nargs = numargs(f)
nargs =

4
args = argnames(f)
args =

'a'
'b'
'n'
'x'

See Also fittype, formula, numargs
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Purpose Category of fit of cfit or fittype object

Syntax cname = category(fun)

Description cname = category(fun) returns the fit category cname of the cfit or
fittype object fun, where cname is one of 'custom', 'interpolant',
'library', or 'spline'.

Example f1 = fittype('a*x^2+b*exp(n*x)');
category(f1)
ans =
custom

f2 = fittype('pchipinterp');
category(f2)
ans =
interpolant

f3 = fittype('fourier4');
category(f3)
ans =
library

f4 = fittype('smoothingspline');
category(f4)
ans =
spline

See Also fittype, type, cflibhelp
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Purpose Constructor for cfit object

Syntax cfun = cfit(ffun,coeff1,coeff2,...)

Description cfun = cfit(ffun,coeff1,coeff2,...) constructs the cfit object
cfun using the model type specified by the fittype object ffun and the
coefficient values coeff1, coeff2, etc.

Note cfit is called by the fit function when fitting fittype objects to
data. To create a cfit object that is the result of a regression, use fit.

You should only call cfit directly if you want to assign values to
coefficients and problem parameters of a fittype object without
performing a fit.

Example f = fittype('a*x^2+b*exp(n*x)')
f =

General model:
f(a,b,n,x) = a*x^2+b*exp(n*x)

c = cfit(f,1,10.3,-1e2)
c =

General model:
c(x) = a*x^2+b*exp(n*x)

Coefficients:
a = 1
b = 10.3
n = -100

See Also fit, fittype, feval
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Purpose Information on library models

Syntax cflibhelp
cflibhelp libtype

Description cflibhelp displays the names, equations, and descriptions of all models
in the curve-fitting library. Library names are used as input arguments
in the fit and fittype functions.

cflibhelp libtype restricts the display of names, equations, and
descriptions to the subcategory of library models libtype. Recognized
library types are listed in the table below.

libtype Description

distribution Probability distribution models

exponential One-term and two-term exponential models

fourier Fourier polynomial models

gaussian Sums of Gaussian models, up to eight terms

interpolant Interpolating models, including linear, nearest
neighbor, cubic spline, and shape-preserving
cubic spline

polynomial Polynomial models, up to ninth degree

power One-term and two-term power models

rational Ratios of polynomial models, up to degree 5 in
both the numerator and the denominator

sin Sums of sinusoidal models, up to eight terms

spline Cubic spline and smoothing spline models

For more information on library models, refer to the “Library Models”
on page 2-32 section of the User’s Guide.
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Example cflibhelp polynomial

POLYNOMIAL MODELS

MODELNAME EQUATION

poly1 Y = p1*x+p2
poly2 Y = p1*x^2+p2*x+p3
poly3 Y = p1*x^3+p2*x^2+...+p4
...
poly9 Y = p1*x^9+p2*x^8+...+p10

See Also fit, fittype
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Purpose Open Curve Fitting Tool

Syntax cftool
cftool(xdata,ydata)
cftool(xdata,ydata,w)

Description cftool opens Curve Fitting Tool, an interactive environment for fitting
curves to one-dimensional data.

cftool(xdata,ydata) opens Curve Fitting Tool with predictor data
xdata and response data ydata. xdata and ydata must be vectors of
the same size. Infs, NaNs, and imaginary parts of complex numbers are
ignored in the data.

cftool(xdata,ydata,w) also imports the weight vector w into Curve
Fitting Tool for weighting data in subsequent fits. w must be the same
length as xdata and ydata.

Remarks The Curve Fitting Tool is an interactive environment presented in the
form of a graphical user interface. It allows you to

• Import data from the MATLAB® workspace

• Explore the data graphically

• Preprocess the data for fitting using exclusion rules and smoothing

• Fit a variety of library or custom models to the data

• Generate relevant regression statistics

• Post-process the fit through interpolation, extrapolation,
differentiation, and integration

• Export results back to the MATLAB workspace for further analysis
and visualization

The main Curve Fitting Tool interface is shown below.

6-7



cftool

Clicking the Data, Fitting, Exclude, Plotting, or Analysis buttons
opens associated GUIs, described below.

In the figure above, data was imported from the MAT-file census using
the Data GUI and fit with a quadratic polynomial using the Fitting
GUI. Residuals were displayed in the subplot by selecting View >
Residuals > Line Plot.

For a complete example that uses many of these GUIs, refer to Chapter
1, “Getting Started”.

The Data GUI

The Data GUI allows you to

• Import, name, preview, and delete data sets

6-8



cftool

• Smooth data using a variety of methods

The Data GUI is shown below with the census data loaded.

Refer to “Preprocessing Data” on page 2-2 for more information about
the Data GUI.

The Fitting GUI

The Fitting GUI allows you to

• Fit your data using parametric or nonparametric models

• Set algorithm options for nonlinear fits

• Compare coefficients and goodness of fit statistics from different
models

• Keep track of all data sets and fits in the current session
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The Fitting GUI is shown below with the results of fitting the census
data.

6-10



cftool

The Exclude GUI

The Exclude GUI allows you to create exclusion rules for a data set. An
exclusion rule identifies data to be excluded while fitting. The excluded
data can be individual data points, or a section of predictor or response
data.

The Exclude GUI is shown below with the first two points of the census
data marked for exclusion.

The Plotting GUI

The Plotting GUI allows you to determine the data sets and fits
displayed by Curve Fitting Tool.

The Plotting GUI is shown below with the census data and the fit
poly2 checked for display.
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The Analysis GUI

The Analysis GUI allows you to

• Interpolate, extrapolate, differentiate, or integrate a fit

• Display the results of your analysis numerically or in a plot

The Analysis GUI is shown below with a numerical display of the
results of extrapolating the census data from the year 2000 to the year
2050 in 10-year increments.

6-12



cftool

Refer to “Analyzing the Fit” on page 1-17 for an example that uses the
Analysis GUI.
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coeffnames

Purpose Coefficient names of cfit or fittype object

Syntax coeffs = coeffnames(fun)

Description coeffs = coeffnames(fun) returns the coefficient (parameter) names
of the cfit or fittype object fun as an n-by-1 cell array of strings
coeffs, where n = numcoeffs(fun).

Example f = fittype('a*x^2+b*exp(n*x)');
ncoeffs = numcoeffs(f)
ncoeffs =

3
coeffs = coeffnames(f)
coeffs =

'a'
'b'
'n'

See Also fittype, formula, numcoeffs, probnames, coeffvalues
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Purpose Coefficient values of cfit object

Syntax coeffvals = coeffvalues(fun)

Description coeffvals = coeffvalues(fun) returns the values of the coefficients
(parameters) of the cfit object fun as a 1-by-n vector coeffvals, where
n = numcoeffs(fun).

Example load census

f = fittype('poly2');
coeffnames(f)
ans =

'p1'
'p2'
'p3'

formula(f)
ans =
p1*x^2 + p2*x + p3

c = fit(cdate,pop,f);
coeffvalues(c)
ans =

1.0e+004 *
0.0000 -0.0024 2.1130

See Also coeffnames,confint, predint, probvalues
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Purpose Confidence intervals for fit coefficients of cfit object

Syntax ci = confint(fitresult)
ci = confint(fitresult,level)

Description ci = confint(fitresult) returns 95% confidence bounds ci on the
coefficients associated with the cfit object fitresult. fitresult must
be an output from the fit function to contain the necessary information
for ci. ci is a 2-by-n array where n = numcoeffs(fitresult). The top
row of ci contains the lower bound for each coefficient; the bottom row
contains the upper bound.

ci = confint(fitresult,level) returns confidence bounds at the
confidence level specified by level. level must be between 0 and 1.
The default value of level is 0.95.

Remarks To calculate confidence bounds, confint uses R-1 (the inverse R factor
from QR decomposition of the Jacobian), the degrees of freedom for error,
and the root mean squared error. This information is automatically
returned by the fit function and contained within fitresult.

If coefficients are bounded and one or more of the estimates are at
their bounds, those estimates are regarded as fixed and do not have
confidence bounds.

Note that you cannot calculate confidence bounds if
category(fitresult) is 'spline' or 'interpolant'.

Example load census

fitresult = fit(cdate,pop,'poly2')
fitresult =

Linear model Poly2:
fitresult(x) = p1*x^2 + p2*x + p3

Coefficients (with 95% confidence bounds):
p1 = 0.006541 (0.006124, 0.006958)
p2 = -23.51 (-25.09, -21.93)
p3 = 2.113e+004 (1.964e+004, 2.262e+004)
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ci = confint(fitresult,0.95)
ci =

0.0061242 -25.086 19641
0.0069581 -21.934 22618

Note that fit and confint display the confidence bounds in slightly
different formats.

See Also fit, predint
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Purpose Data statistics

Syntax xds = datastats(xdata)
[xds,yds] = datastats(xdata,ydata)

Description xds = datastats(xdata) returns statistics for the column vector
xdata to the structure xds. Fields in xds are listed in the table below.

Field Description

num The number of data values

max The maximum data value

min The minimum data value

mean The mean value of the data

median The median value of the data

range The range of the data

std The standard deviation of the data

[xds,yds] = datastats(xdata,ydata) returns statistics for the
column vectors xdata and ydata to the structures xds and yds,
respectively. xds and yds contain the fields listed in the table above.
xdata and ydata must be of the same size.

Remarks If xdata or ydata contains complex values, only the real parts are used
in computing the statistics. Data containing Inf or NaN are processed
using the usual MATLAB® rules.

Example Compute statistics for the census data in census.mat:

load census
[xds,yds] = datastats(cdate,pop)
xds =

num: 21
max: 1990
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min: 1790
mean: 1890

median: 1890
range: 200

std: 62.048
yds =

num: 21
max: 248.7
min: 3.9

mean: 85.729
median: 62.9
range: 244.8

std: 78.601

See Also

excludedata, smooth
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Purpose Dependent variable of cfit or fittype object

Syntax dep = dependnames(fun)

Description dep = dependnames(fun) returns the (single) dependent variable name
of the cfit or fittype object fun as a 1-by-1 cell array of strings dep.

Example f1 = fittype('a*x^2+b*exp(n*x)');
dep1 = dependnames(f1)
dep1 =

'y'

f2 = fittype('a*x^2+b*exp(n*x)','dependent','power');
dep2 = dependnames(f2)
dep2 =

'power'

See Also indepnames, fittype, formula
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Purpose Differentiate cfit object

Syntax d1 = differentiate(fun,x)
[d1,d2] = differentiate(...)

Description d1 = differentiate(fun,x) differentiates the cfit object fun at the
points specified by the vector x and returns the result in d1. d1 is a
column vector the same length as x.

[d1,d2] = differentiate(...) also returns the second derivative in
d2. d2 is a column vector the same length as x.

Remarks For library models with closed forms, derivatives are calculated
analytically. For all other models, the first derivative is calculated using
the centered difference quotient

′ = −+ −y
y y

h
x h x h

2

where x is the value at which the derivative is calculated, h is a small
number (on the order of the cube root of eps), yx+h is fun evaluated
at x+h, and yx–h is fun evaluated at x – h. The second derivative is
calculated using the expression

′′ = + −+ −y
y y y

h
x h x h x2

2

Example Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent
% Gaussian noise

ydata = y0 + noise;
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Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the derivatives of the fit at the predictors:

[d1,d2] = differentiate(fit1,xdata);

Plot the data, the fit, and the derivatives:

subplot(3,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(3,1,2)
plot(xdata,d1,'m') % double plot method
grid on
legend('1st derivative')
subplot(3,1,3)
plot(xdata,d2,'c') % double plot method
grid on
legend('2nd derivative')
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Note that derivatives can also be computed and plotted directly with
the cfit plot method, as follows:

plot(fit1,xdata,ydata,{'fit','deriv1','deriv2'})

The plot method, however, does not return data on the derivatives.
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See Also fit, plot, integrate
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Purpose Exclude data from fit

Syntax outliers = excludedata(xdata,ydata,MethodName,MethodValue)

Description outliers = excludedata(xdata,ydata,MethodName,MethodValue)
identifies data to be excluded from a fit using the specified MethodName
and MethodValue. outliers is a logical vector, with 1 marking
predictors (xdata) to exclude and 0 marking predictors to include.
Supported MethodName and MethodValue pairs are given in the table
below.

MethodName MethodValue

'box' A four-element vector specifying the edges of a closed
box in the xy-plane, outside of which data is to be
excluded from a fit. The vector has the form [xmin
xmax ymin ymax].

'domain' A two-element vector specifying the endpoints of a
closed interval on the x-axis, outside of which data is
to be excluded from a fit. The vector has the form
[xmin xmax].

'indices' A vector of indices specifying the data points to be
excluded.

'range' A two-element vector specifying the endpoints of a
closed interval on the y-axis, outside of which data is
to be excluded from a fit. The vector has the form
[ymin ymax].

Remarks You can combine data exclusion rules using logical operators. For
example, to exclude data inside the box [-1 1 -1 1] or outside the
domain [-2 2], use:

outliers1 = excludedata(xdata,ydata,'box',[-1 1 -1 1]);
outliers2 = excludedata(xdata,ydata,'domain',[-2 2]);
outliers = ~outliers1|outliers2;
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You can visualize the combined exclusion rule using random data:

xdata = -3 + 6*rand(1,1e4);
ydata = -3 + 6*rand(1,1e4);
plot(xdata(~outliers),ydata(~outliers),'.')
axis ([-3 3 -3 3])
axis square

Example Load the vote counts and county names for the state of Florida from
the 2000 U.S. presidential election:

load flvote2k

Use the vote counts for the two major party candidates, Bush and Gore,
as predictors for the vote counts for third-party candidate Buchanan,
and plot the scatters:

plot(bush,buchanan,'rs')
hold on
plot(gore,buchanan,'bo')
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legend('Bush data','Gore data')

Assume a model where a fixed proportion of Bush or Gore voters choose
to vote for Buchanan:

f = fittype({'x'})
f =

Linear model:
f(a,x) = a*x

Exclude the data from absentee voters, who did not use the controversial
“butterfly” ballot:

absentee = find(strcmp(counties,'Absentee Ballots'));
nobutterfly = excludedata(bush,buchanan,...

'indices',absentee);

Perform a bisquare weights robust fit of the model to the two data sets,
excluding absentee voters:
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bushfit = fit(bush,buchanan,f,...
'Exclude',nobutterfly,'Robust','on');

gorefit = fit(gore,buchanan,f,...
'Exclude',nobutterfly,'Robust','on');

Robust fits give outliers a low weight, so large residuals from a robust
fit can be used to identify the outliers:

figure
plot(bushfit,bush,buchanan,'rs','residuals')
hold on
plot(gorefit,gore,buchanan,'bo','residuals')

The residuals in the plot above can be computed as follows:

bushres = buchanan - feval(bushfit,bush);
goreres = buchanan - feval(gorefit,gore);

Large residuals can be identified as those outside the range [-500 500]:
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bushoutliers = excludedata(bush,bushres,...
'range',[-500 500]);

goreoutliers = excludedata(gore,goreres,...
'range',[-500 500]);

The outliers for the two data sets correspond to the following counties:

counties(bushoutliers)
ans =

'Miami-Dade'
'Palm Beach'

counties(goreoutliers)
ans =

'Broward'
'Miami-Dade'
'Palm Beach'

Miami-Dade and Broward counties correspond to the largest predictor
values. Palm Beach county, the only county in the state to use the
“butterfly” ballot, corresponds to the largest residual values.

See Also fit, fitoptions
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Purpose Evaluate cfit or fittype object

Syntax y = feval(cfun,x)
y = feval(ffun,coeff1,coeff2,...,x)

Description y = feval(cfun,x) evaluates the cfit object cfun at the predictor
values in the column vector x and returns the response values in the
column vector y.

y = feval(ffun,coeff1,coeff2,...,x) assigns the coefficients
coeff1, coeff2, etc. to the fittype object ffun, evaluates it at the
predictor values in the column vector x, and returns the response values
in the column vector y. ffun cannot be a cfit object in this syntax. To
evaluate cfit objects, use the first syntax.

Remark cfit or fittype objects can call feval indirectly using the following
functional syntax:

y = cfun(x) % cfit objects;
y = ffun(coef1,coef2,...,x) % fittype objects;

Example f = fittype('a*x^2+b*exp(n*x)');
c = cfit(f,1,10.3,-1e2);
X = rand(2)
X =

0.0579 0.8132
0.3529 0.0099

y1 = feval(f,1,10.3,-1e2,X)
y1 =

0.0349 0.6612
0.1245 3.8422

y1 = f(1,10.3,-1e2,X)
y1 =

0.0349 0.6612
0.1245 3.8422
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y2 = feval(c,X)
y2 =

0.0349
0.1245
0.6612
3.8422

y2 = c(X)
y2 =

0.0349
0.1245
0.6612
3.8422

See Also fit, fittype, cfit
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Purpose Fit model to data

Syntax cfun = fit(xdata,ydata,libname)
cfun = fit(...,PropName,PropVal,...)
cfun = fit(xdata,ydata,libname,options)
cfun = fit(xdata,ydata,ffun,...)
cfun = fit(...,'problem',vals)
[cfun,gof] = fit(...)
[cfun,gof,output] = fit(...)

Description cfun = fit(xdata,ydata,libname) fits the data in the column vectors
xdata and ydata with the library model specified by libname. xdata
and ydata cannot contain Inf or NaN. Only the real parts of complex
data are used in the fit. You can display library model names with the
cflibhelp function. The fit result is returned as a cfit object cfun.

cfun = fit(...,PropName,PropVal,...) fits the data using specified
property name/value pairs. You can display the supported property
names and values for specific library models with the fitoptions
function.

cfun = fit(xdata,ydata,libname,options) fits the data using the
options specified by the fit options structure options. Fit options
structures are created with the fitoptions function.

cfun = fit(xdata,ydata,ffun,...) fits the data with the fittype
object ffun. fittype objects are created with the fittype function.

cfun = fit(...,'problem',vals) assigns vals to the
problem-dependent parameters of the model before fitting. vals is a
scalar or a cell array with one element per parameter.

[cfun,gof] = fit(...) returns goodness-of-fit statistics to the
structure gof. The gof structure has the fields shown in the table below.

Field Value

sse Sum of squares due to error

rsquare Coefficient of determination
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Field Value

dfe Degrees of freedom

adjrsquare Degree-of-freedom adjusted coefficient of
determination

rmse Root mean squared error (standard error)

[cfun,gof,output] = fit(...) returns the structure output, which
contains information associated with the fitting algorithm. Fields
depend on the algorithm. For example, the output structure for
nonlinear least-squares algorithms has the fields shown in the table
below.

Field Value

numobs Number of observations (response values)

numparam Number of unknown parameters (coefficients)
to fit

residuals Vector of residuals

Jacobian Jacobian matrix

exitflag Describes the exit condition of the algorithm.
Positive flags indicate convergence, within
tolerances. Zero flags indicate that the
maximum number of function evaluations
or iterations was exceeded. Negative flags
indicate that the algorithm did not converge
to a solution.

iterations Number of iterations

funcCount Number of function evaluations

firstorderopt Measure of first-order optimality (absolute
maximum of gradient components)

algorithm Fitting algorithm employed
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Remarks For some nonlinear library models (rational and Weibull), and all
custom nonlinear models, default initial values for coefficients are
selected uniformly at random from the interval (0,1). As a result,
multiple fits using the same data and model may lead to different
fitted coefficients. To avoid this, initial values for coefficients can be
specified through a fitoptions structure or a vector value for the
StartPoint property. Alternatively, the initial state of the random
number generator rand can be set before fitting.

All other nonlinear library models automatically compute reasonable
initial values. These initial values depend on the data, and are based on
model-specific heuristics.

Example Load and plot the data in census.mat:

load census
plot(cdate,pop,'o')
hold on
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Create a fit options structure and a fittype object for the custom
nonlinear model y = a(x–b)n, where a and b are coefficients and n is
a problem-dependent parameter:

s = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0,0],...
'Upper',[Inf,max(cdate)],...
'Startpoint',[1 1]);

f = fittype('a*(x-b)^n','problem','n','options',s);

Fit the data using the fit options and a value of n = 2:

[c2,gof2] = fit(cdate,pop,f,'problem',2)
c2 =

General model:
c2(x) = a*(x-b)^n

Coefficients (with 95% confidence bounds):
a = 0.006092 (0.005743, 0.006441)
b = 1789 (1784, 1793)

Problem parameters:
n = 2

gof2 =
sse: 246.1543

rsquare: 0.9980
dfe: 19

adjrsquare: 0.9979
rmse: 3.5994

Fit the data using the fit options and a value of n = 3:

[c3,gof3] = fit(cdate,pop,f,'problem',3)
c3 =

General model:
c3(x) = a*(x-b)^n

Coefficients (with 95% confidence bounds):
a = 1.359e-005 (1.245e-005, 1.474e-005)
b = 1725 (1718, 1731)

Problem parameters:
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n = 3
gof3 =

sse: 232.0058
rsquare: 0.9981

dfe: 19
adjrsquare: 0.9980

rmse: 3.4944

Plot the fit results with the data:

plot(c2,'m')
plot(c3,'c')

See Also cflibhelp, fitoptions, fittype, feval, plot
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Purpose Create or modify fit options structure

Syntax options = fitoptions
options = fitoptions(model)
options = fitoptions(model,fld1,val1,fld2,val2,...)
options = fitoptions('Method',method)
options =
fitoptions('Method',method,fld1,val1,fld2,val2,...)
newoptions = fitoptions(options,fld1,val1,fld2,val2,...)
newoptions = fitoptions(options1,options2)

Description options = fitoptions creates the default fit options structure
options. Fields in the options structure, listed in the table below with
their default values, are supported by all fitting methods.

Field Name Values

Normalize Specifies whether the data is centered and scaled.
Values are 'off' or 'on'. The default is 'off'.

Exclude A logical vector indicating data points to exclude
from the fit. The excludedata function can be used
to create this vector. The default is empty.

Weights A vector of weights the same size as the response
data. The default is empty.

Method The fitting method. A complete list of supported
fitting methods is given below. The default is
'None'.

options = fitoptions(model) creates the default fit options structure
for the library or custom model specified by the string model. You can
display library model names with the cflibhelp function.

options = fitoptions(model,fld1,val1,fld2,val2,...) creates a
fit options structure for the specified model with the fields specified by
the strings fld1, fld2, ... set to the values val1, val2, ..., respectively.
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options = fitoptions('Method',method) creates the default fit
options structure for the fitting method specified by the string method.
Supported fitting methods are listed in the table below.

method Description

'NearestInterpolant' Nearest neighbor interpolation

'LinearInterpolant' Linear interpolation

'PchipInterpolant' Piecewise cubic Hermite interpolation

'CubicSplineInterpolant' Cubic spline interpolation

'SmoothingSpline' Smoothing spline

'LinearLeastSquares' Linear least squares

'NonlinearLeastSquares' Nonlinear least squares

options =
fitoptions('Method',method,fld1,val1,fld2,val2,...) creates
the default fit options structure for the fitting method specified by the
string method with the fields specified by the strings fld1, fld2, ... set
to the values val1, val2, ..., respectively.

newoptions = fitoptions(options,fld1,val1,fld2,val2,...)
modifies the existing fit options structure options by setting the fields
specified by the strings fld1, fld2, ... set to the values val1, val2, ...,
respectively. The new options structure is returned in newoptions.

newoptions = fitoptions(options1,options2) combines the input
fit options structures options1 and options2 to create the output fit
options structure newoptions. If the input structures have Method
fields set to the same value, the nonempty values for the fields in
options2 override the corresponding values in options1 in the output
structure. If the input structures have Method fields set to different
values, the output structure will have the same Method as options1,
and only the values of the Normalize, Exclude, and Weights fields of
options2 will override the corresponding values in options1.
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Remarks Field values in a fit options structure can be referenced with the get
method and assigned with the set method. For example:

options = fitoptions('fourier1');
get(options,'Method')
ans =
NonlinearLeastSquares
get(options,'MaxIter')
ans =

400
set(options,'Maxiter',1e3);
get(options,'MaxIter')
ans =

1000

Field values can also be referenced and assigned using the dot notation.
For example:

options.MaxIter
ans =

1000
options.MaxIter = 500;
options.MaxIter
ans =

500

Additional Fit Options

Additional fields in the fit options structure, beyond the default fields
Normalize, Exclude, Weights, and Method, are available according to
the fitting method.

If the Method field has the value 'NearestInterpolant',
'LinearInterpolant', 'PchipInterpolant', or
'CubicSplineInterpolant', there are no additional fields in the fit
options structure.

If the Method field has the value SmoothingSpline, the SmoothingParam
field is available to configure the smoothing parameter. Its value must
be between 0 and 1. The default value depends on the data set.
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If the Method field has the value LinearLeastSquares, the additional
fields available in the fit options structure are listed in the table below.

Field Description

Robust Specifies the robust linear least-squares fitting
method to be used. Values are 'on', 'off', 'LAR',
or 'Bisquare'. The default is 'off'. 'LAR'
specifies the least absolute residual method and
'Bisquare' specifies the bisquare weights method.
'on' is equivalent to 'Bisquare', the default
method.

Lower A vector of lower bounds on the coefficients to
be fitted. The default value is an empty vector,
indicating that the fit is unconstrained by lower
bounds. If bounds are specified, the vector length
must equal the number of coefficients. Individual
unconstrained lower bounds can be specified by
-Inf.

Upper A vector of upper bounds on the coefficients to
be fitted. The default value is an empty vector,
indicating that the fit is unconstrained by upper
bounds. If bounds are specified, the vector length
must equal the number of coefficients. Individual
unconstrained upper bounds can be specified by Inf.

If the Method field has the value NonlinearLeastSquares, the
additional fields available in the fit options structure are listed in the
table below.
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Property Description

Robust Specifies the robust linear least-squares
fitting method to be used. Values are 'on',
'off', 'LAR', or 'Bisquare'. The default
is 'off'. 'LAR' specifies the least absolute
residual method and 'Bisquare' specifies the
bisquare weights method. 'on' is equivalent
to 'Bisquare', the default method.

Lower A vector of lower bounds on the coefficients
to be fitted. The default value is an empty
vector, indicating that the fit is unconstrained
by lower bounds. If bounds are specified,
the vector length must equal the number of
coefficients. Individual unconstrained lower
bounds can be specified by -Inf.

Upper A vector of upper bounds on the coefficients
to be fitted. The default value is an empty
vector, indicating that the fit is unconstrained
by upper bounds. If bounds are specified,
the vector length must equal the number of
coefficients. Individual unconstrained upper
bounds can be specified by Inf.

StartPoint A vector of initial values for the coefficients.
The default value of StartPoint is an empty
vector. If the default value is passed to the
fit function, starting points for some library
models are determined heuristically. For other
models, the values are selected uniformly at
random on the interval (0,1).

Algorithm The algorithm used for the fitting procedure.
Values are 'Levenberg-Marquardt',
'Gauss-Newton', or 'Trust-Region'. The
default is 'Trust-Region'.

6-41



fitoptions

Property Description

DiffMaxChange The maximum change in coefficients for finite
difference gradients. The default is 0.1.

DiffMinChange The minimum change in coefficients for finite
difference gradients. The default is 10–8.

Display Controls the display in the command window.
'notify', the default, displays output only if
the fit does not converge. 'final' displays
only the final output. 'iter' displays output
at each iteration. 'off' displays no output.

MaxFunEvals The maximum number of evaluations of the
model allowed. The default is 600.

MaxIter The maximum number of iterations allowed
for the fit. The default is 400.

TolFun The termination tolerance on the model value.
The default is 10–6.

TolX The termination tolerance on the coefficient
values. The default is 10–6.
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Note For the fields Upper, Lower, and StartPoint, the order of the
entries in the vector value is the order of the coefficients returned by
the coeffnames method. For example, if

f = fittype('b*x^2+c*x+a');
coeffnames(f)
ans =

'a'
'b'
'c'

then setting

options.StartPoint = [1 3 5];

assigns initial values to the coefficients as follows: a = 1, b = 3, c =
5. Note that this is not the order of the coefficients in the expression
used to create f with fittype.

Example Create the default fit options structure and set the option to center
and scale the data before fitting:

options = fitoptions;
options.Normal = 'on';
options
options =

Normalize: 'on'
Exclude: [1x0 double]
Weights: [1x0 double]
Method: 'None'

Modifying the default fit options structure is useful when you want to
set the Normalize, Exclude, or Weights fields, and then fit your data
using the same options with different fitting methods. For example:

load census
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f1 = fit(cdate,pop,'poly3',options);
f2 = fit(cdate,pop,'exp1',options);
f3 = fit(cdate,pop,'cubicsp',options);

Data-dependent fit options are returned in the third output argument
of the fit function. For example:

[f,gof,out] = fit(cdate,pop,'smooth');
smoothparam = out.p
smoothparam =

0.0089

The default smoothing parameter can be modified for a new fit:

options = fitoptions('Method','Smooth',...
'SmoothingParam',0.0098);

[f,gof,out] = fit(cdate,pop,'smooth',options);

Example Create a noisy sum of two Gaussian peaks—one with a small width,
and one with a large width:

a1 = 1; b1 = -1; c1 = 0.05;
a2 = 1; b2 = 1; c2 = 50;
x = (-10:0.02:10)';
gdata = a1*exp(-((x-b1)/c1).^2) + ...

a2*exp(-((x-b2)/c2).^2) + ...
0.1*(rand(size(x))-.5);

plot(x,gdata)
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Fit the data using the two-term Gaussian library model:

f = fittype('gauss2');
gfit = fit(x,gdata,f)
gfit =

General model Gauss2:
gfit(x) = a1*exp(-((x-b1)/c1)^2) +

a2*exp(-((x-b2)/c2)^2)
Coefficients (with 95% confidence bounds):

a1 = -0.05388 (-0.136, 0.02826)
b1 = -2.651 (-2.718, -2.584)
c1 = 0.05373 (-0.04106, 0.1485)
a2 = 1.012 (1.006, 1.018)
b2 = 0.6703 (0.06681, 1.274)
c2 = 41.2 (36.54, 45.85)

The algorithm is having difficulty, as indicated by the wide confidence
intervals for some of the coefficients. To help the algorithm, we could
specify lower bounds for the nonnegative amplitudes a1, a2 and widths
c1, c2:
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options = fitoptions('gauss2');
options.Lower = [0 -Inf 0 0 -Inf 0];

Recompute the fit with the bound constraints on the coefficients:

gfit = fit(x,gdata,ftype,options)
gfit =

General model Gauss2:
gfit(x) = a1*exp(-((x-b1)/c1)^2) +

a2*exp(-((x-b2)/c2)^2)
Coefficients (with 95% confidence bounds):

a1 = 1.003 (0.9641, 1.042)
b1 = -1 (-1.002, -0.9987)
c1 = 0.04972 (0.04748, 0.05197)
a2 = 1.002 (0.999, 1.004)
b2 = 1.136 (0.725, 1.547)
c2 = 48.89 (45.32, 52.47)

This is a much better fit. The fit can be further improved by assigning
reasonable values to other fields in the fit options structure.

See Also cflibhelp, fit, get, set

6-46



fittype

Purpose Constructor for fittype object

Syntax ffun = fittype(libname)
ffun = fittype(expr)
ffun = fittype({expr1,...,exprn})
ffun = fittype(expr,PropName,PropVal,...)
ffun = fittype({expr1,...,exprn},PropName,PropVal,...)

Description ffun = fittype(libname) constructs the fittype object ffun for the
library model specified by libname. You can display library model
names with the cflibhelp function.

ffun = fittype(expr) constructs the fittype object ffun for the
custom nonlinear model specified by the expression in the string expr.
By default, the independent variable is assumed to be x and the
dependent variable is assumed to be y. All other variables are assumed
to be coefficients. All coefficients must be scalars.

Note The following coefficient names are not allowed in the expression
string expr: i, j, pi, inf, nan, eps.

ffun = fittype({expr1,...,exprn}) constructs the fittype object
ffun for the custom linear model with terms specified by the expressions
in the strings expr1, expr2, ... , exprn. Coefficients are not included in
the expressions for the terms. If there is a constant term, use '1' as
the corresponding expression in the cell array.

Note islinear assumes that all models specified with the syntax
ffun = fittype(expr) are nonlinear models. To create a linear
model with fittype that will be recognized as linear by islinear
(and, importantly, by the algorithms of fit), use the syntax ffun =
fittype({expr1,...,exprn}).
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ffun = fittype(expr,PropName,PropVal,...) or ffun =
fittype({expr1,...,exprn},PropName,PropVal,...) constructs
the fittype object ffun using specified property name/value pairs.
Supported property names and values are given in the table below.

PropName PropVal

'coefficients' The coefficient names. Use a cell array if there
are multiple names. The following names are
not allowed: i, j, pi, inf, nan, eps.

'dependent' The dependent (response) variable name

'independent' The independent (predictor) variable name

'options' The default fit options for the object

'problem' The problem-dependent (fixed) parameter
names. Use a cell array if there are multiple
names. The default is none.

Example Construct a fittype object for the rat33 library model:

f = fittype('rat33')
f =

General model Rat33:
f(p1,p2,p3,p4,q1,q2,q3,x) =

(p1*x^3 + p2*x^2 + p3*x + p4)/
(x^3 + q1*x^2 + q2*x + q3)

Construct a fittype object for a custom nonlinear model, designating n
as a problem-dependent parameter and u as the independent variable:

g = fittype('a*u+b*exp(n*u)',...
'problem','n',...
'independent','u')

g =
General model:

g(a,b,n,u) = a*u+b*exp(n*u)
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Construct a fittype object for a custom linear model, specifying the
names of the coefficients:

h = fittype({'cos(x)','1'},'coefficients',{'a1','a2'})
h =

Linear model:
h(a1,a2,x) = a1*cos(x) + a2

See Also fit, cfit
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Purpose Formula of cfit or fittype object

Syntax formula(fun)

Description formula(fun) returns the formula of the cfit or fittype object fun
as a character array.

Example f = fittype('weibull');
formula(f)
ans =
a*b*x^(b-1)*exp(-a*x^b)

g = fittype('cubicspline');
formula(g)
ans =
piecewise polynomial

See Also fittype, coeffnames, numcoeffs, probnames, coeffvalues
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Purpose Get fit options structure field names and values

Syntax get(options)
s = get(options)
value = get(options,fld)

Description get(options) displays all field names and values of the fit options
structure options.

s = get(options) returns a copy of the fit options structure options
as the structure s.

value = get(options,fld) returns the value of the field fld of the fit
options structure options. fld can be a cell array of strings, in which
case value is also a cell array.

Example options = fitoptions('fourier1');
get(options,'Method')
ans =
NonlinearLeastSquares
get(options,'MaxIter')
ans =

400
set(options,'Maxiter',1e3);
get(options,'MaxIter')
ans =

1000

Field values can also be referenced and assigned using the dot notation.
For example:

options.MaxIter
ans =

1000
options.MaxIter = 500;
options.MaxIter
ans =

500
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See Also fitoptions, set
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Purpose Independent variable of cfit or fittype object

Syntax indep = indepnames(fun)

Description indep = indepnames(fun) returns the (single) independent variable
name of the cfit or fittype object fun as a 1-by-1 cell array of strings
indep.

Example f1 = fittype('a*x^2+b*exp(n*x)');
indep1 = indepnames(f1)
indep1 =

'x'

f2 = fittype('a*x^2+b*exp(n*x)','independent','n');
indep2 = indepnames(f2)
indep2 =

'n'

See Also dependnames, fittype, formula
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Purpose Integrate cfit object

Syntax int = integrate(fun,x,x0)

Description int = integrate(fun,x,x0) integrates the cfit object fun at the
points specified by the vector x, starting from x0, and returns the result
in int. int is a vector the same size as x. x0 is a scalar.

Example Create a baseline sinusoidal signal:

xdata = (0:.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal:

noise = 2*y0.*randn(size(y0)); % Response-dependent
% Gaussian noise

ydata = y0 + noise;

Fit the noisy data with a custom sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Find the integral of the fit at the predictors:

int = integrate(fit1,xdata,0);

Plot the data, the fit, and the integral:

subplot(2,1,1)
plot(fit1,xdata,ydata) % cfit plot method
subplot(2,1,2)
plot(xdata,int,'m') % double plot method
grid on
legend('integral')
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Note that integrals can also be computed and plotted directly with the
cfit plot method, as follows:

plot(fit1,xdata,ydata,{'fit','integral'})

The plot method, however, does not return data on the integral.

See Also fit, plot, differentiate
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Purpose Determine if cfit or fittype object is linear

Syntax flag = islinear(fun)

Description flag = islinear(fun) returns a flag of 1 if the cfit or fittype
object fun represents a linear model, and a flag of 0 if it does not.

Note islinear assumes that all custom models specified by the
fittype function using the syntax ftype = fittype('expr')
are nonlinear models. To create a linear model with
fittype that will be recognized as linear by islinear (and,
importantly, by the algorithms of fit), use the syntax ftype =
fittype({'expr1','expr2',...,'exprn'}).

Example f = fittype('a*x+b')
f =

General model:
f(a,b,x) = a*x+b

g = fittype({'x','1'})
g =

Linear model:
g(a,b,x) = a*x + b

h = fittype('poly1')
h =

Linear model Poly1:
h(p1,p2,x) = p1*x + p2

islinear(f)
ans =

0
islinear(g)
ans =
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1
islinear(h)
ans =

1

See Also fittype
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Purpose Number of input arguments of cfit or fittype object

Syntax nargs = numargs(fun)

Description nargs = numargs(fun) returns the number of input arguments nargs
of the cfit or fittype object fun.

Example f = fittype('a*x^2+b*exp(n*x)');
nargs = numargs(f)
nargs =

4
args = argnames(f)
args =

'a'
'b'
'n'
'x'

See Also fittype, formula, argnames
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Purpose Number of coefficients of cfit or fittype object

Syntax ncoeffs = numcoeffs(fun)

Description ncoeffs = numcoeffs(fun) returns the number of coefficients ncoeffs
of the cfit or fittype object fun.

Example f = fittype('a*x^2+b*exp(n*x)');
ncoeffs = numcoeffs(f)
ncoeffs =

3
coeffs = coeffnames(f)
coeffs =

'a'
'b'
'n'

See Also fittype, formula, coeffnames
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Purpose Plot cfit object

Syntax plot(fun)
plot(fun,xdata,ydata)
plot(fun,xdata,ydata,DataLineSpec)
plot(fun,FitLineSpec,xdata,ydata,DataLineSpec)
plot(fun,xdata,ydata,outliers)
plot(fun,xdata,ydata,outliers,OutlierLineSpec)
plot(...,ptype,...)
plot(...,ptype,level)
h = plot(...)

Description plot(fun) plots the cfit object fun over the domain of the current
axes, if any. If there are no current axes, and fun is an output from the
fit function, the plot is over the domain of the fitted data.

plot(fun,xdata,ydata) plots fun together with the predictor data
xdata and the response data ydata.

plot(fun,xdata,ydata,DataLineSpec) plots the predictor and
response data using the color, marker symbol, and line style specified by
the DataLineSpec formatting string. DataLineSpec strings take the
same values as LineSpec strings used by the MATLAB® plot function.

plot(fun,FitLineSpec,xdata,ydata,DataLineSpec) plots fun using
the color, marker symbol, and line style specified by the FitLineSpec
formatting string, and plots xdata and ydata using the color, marker
symbol, and line style specified by the DataLineSpec formatting string.
FitLineSpec and DataLineSpec strings take the same values as
LineSpec strings used by the MATLAB plot function.

plot(fun,xdata,ydata,outliers) plots data indicated by outliers
in a different color. outliers is a logical array the same size as xdata
and ydata. outliers can be computed with the excludedata function.

plot(fun,xdata,ydata,outliers,OutlierLineSpec) plots outliers
using the color, marker symbol, and line style specified by the
OutlierLineSpec. OutlierLineSpec strings take the same values as
LineSpec strings used by the MATLAB plot function.
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plot(...,ptype,...) uses the plot type specified by ptype. Supported
plot types are:

• 'fit' — Data and fit (default)

• 'predfunc' — Data and fit with prediction bounds for the fit

• 'predobs' — Data and fit with prediction bounds for new
observations

• 'residuals' — Residuals

• 'stresiduals' — Standardized residuals (residuals divided by their
standard deviation).

• 'deriv1' — First derivative of the fit

• 'deriv2' — Second derivative of the fit

• 'integral' — Integral of the fit

Plot types can be single or multiple, with multiple plot types specified
as a cell array of strings. With a single plot type, plot draws to the
current axes and can be used with commands like hold and subplot.
With multiple plot types, plot creates subplots for each plot type.

plot(...,ptype,level) plots prediction intervals with a confidence
level specified by level. level must be between 0 and 1. The default
value of level is 0.95.

h = plot(...) returns a vector of handles to the plotted objects.

Example Create a baseline sinusoidal signal:

xdata = (0:0.1:2*pi)';
y0 = sin(xdata);

Add noise to the signal with non-constant variance:

% Response-dependent Gaussian noise
gnoise = y0.*randn(size(y0));
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% Salt-and-pepper noise
spnoise = zeros(size(y0));
p = randperm(length(y0));
sppoints = p(1:round(length(p)/5));
spnoise(sppoints) = 5*sign(y0(sppoints));

ydata = y0 + gnoise + spnoise;

Fit the noisy data with a baseline sinusoidal model:

f = fittype('a*sin(b*x)');
fit1 = fit(xdata,ydata,f,'StartPoint',[1 1]);

Identify “outliers” as points at a distance greater than 1.5 standard
deviations from the baseline model, and refit the data with the outliers
excluded:

fdata = feval(fit1,xdata);
I = abs(fdata - ydata) > 1.5*std(ydata);
outliers = excludedata(xdata,ydata,'indices',I);

fit2 = fit(xdata,ydata,f,'StartPoint',[1 1],...
'Exclude',outliers);

Compare the effect of excluding the outliers with the effect of giving
them lower bisquare weight in a robust fit:

fit3 = fit(xdata,ydata,f,'StartPoint',[1 1],'Robust','on');

Plot the data, the outliers, and the results of the fits:

plot(fit1,'r-',xdata,ydata,'k.',outliers,'m*')
hold on
plot(fit2,'c--')
plot(fit3,'b:')
xlim([0 2*pi])
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Plot the residuals for the two fits considering outliers:

figure
plot(fit2,xdata,ydata,'co','residuals')
hold on
plot(fit3,xdata,ydata,'bx','residuals')
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See Also cftool, excludedata, fit, differentiate, integrate
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Purpose Prediction intervals for cfit object

Syntax ci = predint(fitresult,x)
ci = predint(fitresult,x,level)
ci = predint(fitresult,x,level,intopt,simopt)
[ci,y] = predint(...)

Description ci = predint(fitresult,x) returns upper and lower 95% prediction
bounds for response values associated with the cfit object fitresult
at the new predictor values specified by the vector x. fitresult must
be an output from the fit function to contain the necessary information
for ci. ci is an n-by-2 array where n = length(x). The left column
of ci contains the lower bound for each coefficient; the right column
contains the upper bound.

ci = predint(fitresult,x,level) returns prediction bounds with
a confidence level specified by level. level must be between 0 and 1.
The default value of level is 0.95.

ci = predint(fitresult,x,level,intopt,simopt) specifies the type
of bounds to compute.

intopt is one of

• 'observation' — Bounds for a new observation (default)

• 'functional' — Bounds for the fitted curve

simopt is one of

• 'off' — Non-simultaneous bounds (default)

• 'on' — Simultaneous bounds

Observation bounds are wider than functional bounds because they
measure the uncertainty of predicting the fitted curve plus the random
variation in the new observation. Non-simultaneous bounds are for
individual elements of x; simultaneous bounds are for all elements of x.

6-65



predint

[ci,y] = predint(...) returns the response values y predicted by
fitresult at the predictors in x.

Example Generate data with an exponential trend:

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit the data using a single-term exponential:

fitresult = fit(x,y,'exp1');

Compute prediction intervals:

p11 = predint(fitresult,x,0.95,'observation','off');
p12 = predint(fitresult,x,0.95,'observation','on');
p21 = predint(fitresult,x,0.95,'functional','off');
p22 = predint(fitresult,x,0.95,'functional','on');

Plot the data, fit, and prediction intervals:

subplot(2,2,1)
plot(fitresult,x,y),hold on,plot(x,p11,'m--'),xlim([0 5])
title('Nonsimultaneous observation bounds','Color','m')
subplot(2,2,2)
plot(fitresult,x,y),hold on,plot(x,p12,'m--'),xlim([0 5])
title('Simultaneous observation bounds','Color','m')
subplot(2,2,3)
plot(fitresult,x,y),hold on,plot(x,p21,'m--'),xlim([0 5])
title('Nonsimultaneous functional bounds','Color','m')
subplot(2,2,4)
plot(fitresult,x,y),hold on,plot(x,p22,'m--'),xlim([0 5])
title('Simultaneous functional bounds','Color','m')
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See Also confint, fit, plot
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Purpose Problem-dependent parameter names of cfit or fittype object

Syntax pnames = probnames(fun)

Description pnames = probnames(fun) returns the names of the problem-dependent
(fixed) parameters of the cfit or fittype object fun as a cell array of
strings.

Example f = fittype('(x-a)^n + b','problem',{'a','b'});
coeffnames(f)
ans =

'n'
probnames(f)
ans =

'a'
'b'

load census

c = fit(cdate,pop,f,'problem',{cdate(1),pop(1)},...
'StartPoint',2);

coeffvalues(c)
ans =

0.9877
probvalues(c)
ans =

1.0e+003 *
1.7900 0.0039

See Also fittype, coeffnames, probvalues
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Purpose Problem-dependent parameter values of cfit object

Syntax pvals = probvalues(fun)

Description pvals = probvalues(fun) returns the values of the problem-dependent
(fixed) parameters of the cfit object fun as a row vector.

Example f = fittype('(x-a)^n + b','problem',{'a','b'});
coeffnames(f)
ans =

'n'
probnames(f)
ans =

'a'
'b'

load census

c = fit(cdate,pop,f,'problem',{cdate(1),pop(1)},...
'StartPoint',2);

coeffvalues(c)
ans =

0.9877
probvalues(c)
ans =

1.0e+003 *
1.7900 0.0039

See Also fit, fittype, probnames
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Purpose Assign values in fit options structure

Syntax set(options)
s = set(options)
set(options,fld1,val1,fld2,val2,...)
set(options,flds,vals)

Description set(options) displays all field names of the fit options structure
options. If a field has a finite list of possible string values, these values
are also displayed.

s = set(options) returns a structure s with the same field names as
options. If a field has a finite list of possible string values, the value of
the field in s is a cell array containing the possible string values. If a
field does not have a finite list of possible string values, the value of the
field in s is an empty cell array.

set(options,fld1,val1,fld2,val2,...) sets the fields specified by
the strings fld1, fld2, ... to the values val1, val2, ..., respectively.

set(options,flds,vals) sets the fields specified by the cell array of
strings flds to the corresponding values in the cell array vals.

Example Create a custom nonlinear model, and create a default fit options
structure for the model:

f = fittype('a*x^2+b*exp(n*c*x)','problem','n');
options = fitoptions(f);

Set the Robust and Normalize fields of the fit options structure using
field name/value pairs:

set(options,'Robust','LAR','Normalize','On')

Set the Display, Lower, and Algorithm fields of the fit options structure
using cell arrays of field names/values:

set(opts,{'Disp','Low','Alg'},...
{'Final',[0 0 0],'Levenberg'})

6-70



set

See Also fitoptions, get
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Purpose Smooth response data

Syntax yy = smooth(y)
yy = smooth(y,span)
yy = smooth(y,method)
yy = smooth(y,span,method)
yy = smooth(y,'sgolay',degree)
yy = smooth(y,span,'sgolay',degree)
yy = smooth(x,y,...)

Description yy = smooth(y) smooths the data in the column vector y using a
moving average filter. Results are returned in the column vector yy.
The default span for the moving average is 5.

The first few elements of yy are given by

yy(1) = y(1)
yy(2) = (y(1) + y(2) + y(3))/3
yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
...

Because of the way endpoints are handled, the result differs from the
result returned by the filter function.

yy = smooth(y,span) sets the span of the moving average to span.
span must be odd.

yy = smooth(y,method) smooths the data in y using the method
method and the default span. Supported values for method are listed in
the table below.

method Description

'moving' Moving average (default). A lowpass filter with
filter coefficients equal to the reciprocal of the
span.
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method Description

'lowess' Local regression using weighted linear least
squares and a 1st degree polynomial model

'loess' Local regression using weighted linear least
squares and a 2nd degree polynomial model

'sgolay' Savitzky-Golay filter. A generalized moving
average with filter coefficients determined by an
unweighted linear least-squares regression and a
polynomial model of specified degree (default is
2). The method can accept nonuniform predictor
data.

'rlowess' A robust version of 'lowess' that assigns lower
weight to outliers in the regression. The method
assigns zero weight to data outside six mean
absolute deviations.

'rloess' A robust version of 'loess' that assigns lower
weight to outliers in the regression. The method
assigns zero weight to data outside six mean
absolute deviations.

yy = smooth(y,span,method) sets the span of method to span. For
the loess and lowess methods, span is a percentage of the total
number of data points, less than or equal to 1. For the moving average
and Savitzky-Golay methods, span must be odd (an even span is
automatically reduced by 1).

yy = smooth(y,'sgolay',degree) uses the Savitzky-Golay method
with polynomial degree specified by degree.

yy = smooth(y,span,'sgolay',degree) uses the number of data
points specified by span in the Savitzky-Golay calculation. span must
be odd and degree must be less than span.

yy = smooth(x,y,...) additionally specifies x data. If x is not
provided, methods that require x data assume x = 1:length(y).
You should specify x data when it is not uniformly spaced or sorted.
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If x is not uniform and you do not specify method, lowess is used.
If the smoothing method requires x to be sorted, the sorting occurs
automatically.

Remarks Another way to generate smoothed data is to fit it with a smoothing
spline. Refer to the fit function for more information.

Example Load the data in count.dat:

load count.dat

The 24-by-3 array count contains traffic counts at three intersections
for each hour of the day.

First, use a moving average filter with a 5-hour span to smooth all of
the data at once (by linear index) :

c = smooth(count(:));
C1 = reshape(c,24,3);

Plot the original data and the smoothed data:

subplot(3,1,1)
plot(count,':');
hold on
plot(C1,'-');
title('Smooth C1 (All Data)')

Second, use the same filter to smooth each column of the data
separately:

C2 = zeros(24,3);
for I = 1:3,

C2(:,I) = smooth(count(:,I));
end

Again, plot the original data and the smoothed data:

subplot(3,1,2)
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plot(count,':');
hold on
plot(C2,'-');
title('Smooth C2 (Each Column)')

Plot the difference between the two smoothed data sets:

subplot(3,1,3)
plot(C2 - C1,'o-')
title('Difference C2 - C1')

Note the additional end effects from the 3-column smooth.

Example Create noisy data with outliers:

x = 15*rand(150,1);
y = sin(x) + 0.5*(rand(size(x))-0.5);
y(ceil(length(x)*rand(2,1))) = 3;
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Smooth the data using the loess and rloess methods with a span
of 10%:

yy1 = smooth(x,y,0.1,'loess');
yy2 = smooth(x,y,0.1,'rloess');

Plot original data and the smoothed data.

[xx,ind] = sort(x);
subplot(2,1,1)
plot(xx,y(ind),'b.',xx,yy1(ind),'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''loess''',...

'Location','NW')
subplot(2,1,2)
plot(xx,y(ind),'b.',xx,yy2(ind),'r-')
set(gca,'YLim',[-1.5 3.5])
legend('Original Data','Smoothed Data Using ''rloess''',...

'Location','NW')

Note that the outliers have less influence on the robust method.
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See Also fit, sort
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Purpose Name of cfit or fittype object

Syntax name = type(fun)

Description name = type(fun) returns the custom or library name name of the cfit
or fittype object fun as a character array.

Example f = fittype('a*x^2+b*exp(n*x)');
category(f)
ans =
custom
type(f)
ans =
customnonlinear

g = fittype('fourier4');
category(g)
ans =
library
type(g)
ans =
fourier4

See Also fittype, category, cflibhelp
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